Skip to main content
Log in

Scale effect of porous mesh on the inhibition mechanism of wheat dust flame

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The combustible features of wheat dust easily induce a potential hazard in its processing and application. To clearly reveal the effects of porous mesh parameters on the flame propagation of wheat dust, a vertical combustion pipeline together with the data collecting by the high-speed photography and fine thermocouple was built. Results indicate that with the increase in the mesh scale, the dust combustion and peak temperature are intensified first and then decreased with a darker luminescence. The increasing mesh number shows an inhibition effect on both peak temperature and combustion pressure, but an accelerating first and then weakening effect on flame velocity. A smaller particle size contributes to a more complete combustion, causing a higher peak temperature and flame velocity. At the particle mass of 2.5 g, the maximum value of peak temperature, flame velocity and combustion pressure were obtained during the flame propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Eckhoff RK. Dust explosions in the process industries. J Hazard Mater. 1991;54(3):266–7.

    Google Scholar 

  2. Benedetto D, Russo P, Amyotte P, et al. Studies on accidental gas and dust explosions. Chem Eng Sci. 2010;65(2):772–9.

    Article  CAS  Google Scholar 

  3. Dobashi R, Senda K. Detailed analysis of flame propagation during dust explosions by UV band observations. J Loss Prev Process Ind. 2006;19(2–3):149–53.

    Article  Google Scholar 

  4. Sun J, Dobashi R, Hirano T. Temperature profile across the combustion zone propagating through an iron particle cloud. J Loss Prev Process Ind. 2001;14(6):463–7.

    Article  Google Scholar 

  5. Sun J, Dobashi R, Hirano T. Structure of flames propagating through aluminum particles cloud and combustion process of particles. J Loss Prev Process Ind. 2006;19(6):769–73.

    Article  Google Scholar 

  6. Gao W, Mogi T, Sun J, et al. Effects of particle thermal characteristics on flame structures during dust explosions of three long-chain monobasic alcohols in an open-space chamber. Fuel. 2013;113:86–96.

    Article  CAS  Google Scholar 

  7. Proust C. A few fundamental aspects about ignition and flame propagation in dust clouds. J Loss Prev Process Ind. 2006;19(2–3):104–20.

    Article  Google Scholar 

  8. Han OS, Yashima M, Matsuda T, et al. Behavior of flames propagating through lycopodium dust clouds in a vertical duct. J Loss Prev Process Ind. 2000;13(6):449–57.

    Article  Google Scholar 

  9. Bidabadi M, Rahbari A. Novel analytical model for predicting the combustion characteristics of premixed flame propagation in lycopodium dust particles. J Mech Sci Technol. 2009;23(9):2417–23.

    Article  Google Scholar 

  10. Li H, Rosebrock CD, Riefler N. Experimental investigation on micro explosion of single isolated burning droplets containing titanium tetraisopropoxide for nanoparticle production. Proc Combust Inst. 2017;36(1):1011–8.

    Article  CAS  Google Scholar 

  11. Gan B, Gao W, Jiang H, et al. Flame propagation behaviors and temperature characteristics in polyethylene dust explosions. Powder Technol. 2018;328:345–57.

    Article  CAS  Google Scholar 

  12. Ying H, Risha GA, Yang V, et al. Combustion of bimodal nano/micron-sized aluminum particle dust in air. Proc Combust Inst. 2007;31(2):2001–9.

    Article  CAS  Google Scholar 

  13. Bozorg MV, Bidabadi M, Bordbar V. Numerical investigation of flame behavior and quenching distance in randomly distributed poly-dispersed iron dust cloud combustion within a narrow channel. J Hazard Mater. 2019;367(5):482–91.

    Article  CAS  Google Scholar 

  14. Benedetto AD, Russo P, Amyotte P, et al. Modelling the effect of particle size on dust explosions. Chem Eng Sci. 2010;65(2):772–9.

    Article  CAS  Google Scholar 

  15. Yu J, Zhang X, Zhang Q, et al. Combustion behaviors and flame microstructures of micro- and nano-titanium dust explosions. Fuel. 2016;181:785–92.

    Article  CAS  Google Scholar 

  16. Zhang H, Chen X, Zhang Y, et al. Effects of particle size on flame structures through corn starch dust explosions. J Loss Prev Process Ind. 2017;50:7–14.

    Article  Google Scholar 

  17. Gao W, Mogi T, Sun J, et al. Effects of particle size distributions on flame propagation mechanism during octadecanol dust explosions. Powder Technol. 2013;249:168–74.

    Article  CAS  Google Scholar 

  18. Zhang X, Yu J, Yan X. Flame propagation behaviors of nano- and micro-scale PMMA dust explosions. J Loss Prev Process Ind. 2016;40:101–11.

    Article  CAS  Google Scholar 

  19. Gao W, Yu J, Li J, et al. Experimental investigation on micro- and nano-PMMA dust explosion venting at elevated static activation overpressures. Powder Technol. 2016;301:713–22.

    Article  CAS  Google Scholar 

  20. Sun Y, Sun R, Zhu B, et al. Thermal reaction mechanisms of nano- and micro-scale aluminum powders in carbon dioxide at low heating rate. J Therm Anal Calorim. 2016;124(3):1727–34.

    Article  CAS  Google Scholar 

  21. Mostashari SM, Fayyaz F. TG of a cotton fabric impregnated by sodium borate decahydrate (Na2B4O7·10H2O) as a flame-retardant. J Therm Anal Calorim. 2008;93(3):933–6.

    Article  CAS  Google Scholar 

  22. Li Y, Bi M, Huang L, et al. Hydrogen cloud explosion evaluation under inert gas atmosphere. Fuel Process Technol. 2018;180:96–104.

    Article  CAS  Google Scholar 

  23. Li J, Zhou F, Li S. Experimental study on the dust filtration performance with participation of water mist. Process Saf Environ Prot. 2017;109:357–64.

    Article  CAS  Google Scholar 

  24. Song Y, Nassim B, Zhang Q. Explosion energy of methane/deposited coal dust and inert effects of rock dust. Fuel. 2018;228:112–22.

    Article  CAS  Google Scholar 

  25. Amyotte PR. Solid inertants and their use in dust explosion prevention and mitigation. J Loss Prev Process Ind. 2006;19(2–3):161–73.

    Article  Google Scholar 

  26. Jiang H, Bi M, Li B, et al. Inhibition evaluation of ABC powder in aluminum dust explosion. J Hazard Mater. 2019;361:273–82.

    Article  CAS  PubMed  Google Scholar 

  27. Chen X, Zhang H, Chen X, et al. Effect of dust explosion suppression by sodium bicarbonate with different granulometric distribution. J Loss Prev Process Ind. 2017;49:905–11.

    Article  CAS  Google Scholar 

  28. Jiang H, Bi M, Gao W, et al. Inhibition of aluminum dust explosion by NaHCO3 with different particle size distributions. J Hazard Mater. 2019;200:97–114.

    CAS  Google Scholar 

  29. Yuan C, Amyotte PR, Hossain MN, et al. Minimum ignition energy of nano and micro Ti powder in the presence of inert nano TiO2 powder. J Hazard Mater. 2014;274:322–30.

    Article  CAS  Google Scholar 

  30. Yuan C, Cai J, Amyotte P, et al. Fire hazard of titanium powder layers mixed with inert nano TiO2 powder. J Hazard Mater. 2017;346:19–26.

    Article  PubMed  CAS  Google Scholar 

  31. Masri AR, Ibrahim SS, Nehzat N, et al. Experimental study of premixed flame propagation over various solid obstructions. Exp Thermal Fluid Sci. 2000;21(1):109–16.

    Article  Google Scholar 

  32. Li P, Duan Q, Gong L, et al. Effects of obstacles inside the tube on the shock wave propagation and spontaneous ignition of high-pressure hydrogen. Fuel. 2019;236:1586–94.

    Article  CAS  Google Scholar 

  33. Li Q, Ciccarelli G, Sun X, et al. Flame propagation across a flexible obstacle in a square cross-section channel. Int J Hydrogen Energy. 2018;43(36):17480–91.

    Article  CAS  Google Scholar 

  34. Zhang D, Nie B, Wang C, et al. Preliminary research on porous foam ceramics against gas explosions in goaf. Procedia Eng. 2011;26(4):1330–6.

    Article  CAS  Google Scholar 

  35. Nie B, He X, Zhang R, et al. The roles of foam ceramics in suppression of gas explosion overpressure and quenching of flame propagation. J Hazard Mater. 2011;192(2):741–7.

    Article  CAS  PubMed  Google Scholar 

  36. Wang Y, Jiang S, Wu Z, et al. Study on the inhibition influence on gas explosions by metal foam based on its density and coal dust. J Loss Prev Process Ind. 2018;56:451–7.

    Article  CAS  Google Scholar 

  37. Chen P, Huang F, Sun Y, et al. Effects of metal foam meshes on premixed methane-air flame propagation in the closed duct. J Loss Prev Process Ind. 2017;47:22–8.

    Article  CAS  Google Scholar 

  38. Zhang K, Wang Z, Yan C, et al. Effect of size on methane-air mixture explosions and explosion suppression in spherical vessels connected with pipes. J Loss Prev Process Ind. 2017;49:785–90.

    Article  CAS  Google Scholar 

  39. Zhang S, Wang Z, Zuo Q, et al. Suppression effect of explosion in linked spherical vessels and pipelines impacted by wire-mesh structure. Process Saf Prog. 2016;35(1):68–75.

    Article  CAS  Google Scholar 

  40. Chen X, Zhao Q, Dai H, et al. Effect of metal mesh on the flame propagation characteristics of wheat starch dust. J Loss Prev Process Ind. 2018;55:107–12.

    Article  Google Scholar 

  41. Jin K, Duan Q, Chen J, et al. Experimental study on the influence of multi-layer wire mesh on dynamics of premixed hydrogen-air flame propagation in a closed duct. Int J Hydrogen Energy. 2017;42(21):14809–20.

    Article  CAS  Google Scholar 

  42. Ballantyne A, Moss JB. Fine wire thermocouple measurements of fluctuating temperature. Combust Sci Technol. 1977;17(1–2):63–72.

    Article  Google Scholar 

  43. Gao W, Mogi T, Yu J, et al. Flame propagation mechanisms in dust explosions. J Loss Prev Process Ind. 2015;36:186–94.

    Article  Google Scholar 

  44. Bidabadi M, Biouki SA, Afzalabadi A, et al. Modeling propagation and extinction of aluminum dust particles in a reaction medium with spatially uniform distribution of particles. J Therm Anal Calorim. 2017;129(3):1855–64.

    Article  CAS  Google Scholar 

  45. Zhang H, Chen X, Xie T, et al. Effects of reduced oxygen levels on flame propagation behaviors of starch dust deflagration. J Loss Prev Process Ind. 2018;54:146–52.

    Article  CAS  Google Scholar 

  46. Li X, Choi M, Kim K, et al. Effects of pulverized coal particle size on flame structure in a methane-assisted swirl burner. Fuel. 2019;242:68–76.

    Article  CAS  Google Scholar 

  47. Zhang X, Yu J, Gao W, et al. Effects of particle size distributions on PMMA dust flame propagation behaviors. Powder Technol. 2017;317(15):197–208.

    Article  CAS  Google Scholar 

  48. Bidabadi M, Haghiri A, Rahbari A. The effect of Lewis and Damköhler numbers on the flame propagation through micro-organic dust particles. Int J Therm Sci. 2009;49(3):534–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support to this work by the National Key Research and Development Program of China (No. 2018YFC0808500), the National Natural Science Foundation of China (No. 51804237), the Natural Science Foundation of Hubei Province of China (No. 2018CFB207) and the Fundamental Research Funds for the Central Universities (WUT: 2019IVB035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaming Dai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nan, X., Dai, H., Chen, X. et al. Scale effect of porous mesh on the inhibition mechanism of wheat dust flame. J Therm Anal Calorim 146, 2291–2302 (2021). https://doi.org/10.1007/s10973-021-10745-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10745-y

Keywords

Navigation