Skip to main content
Log in

Micro-organic dust combustion considering particles thermal resistance

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Organic dust flames deal with a field of science in which many complicated phenomena like pyrolysis or devolatization of solid particles and combustion of volatile particles take place. One-dimensional flame propagation in cloud of fuel mixture is analyzed in which flame structure is divided into three zones. The first zone is preheat zone in which rate of the chemical reaction is small and transfer phenomena play significant role in temperature and mass distributions. In this model, it is assumed that particles pyrolyze first to yield a gaseous fuel mixture. The second zone is reaction zone where convection and vaporization rates of the particles are small. The third zone is convection zone where diffusive terms are negligible in comparison of other terms. Non-zero Biot number is used in order to study effect of particles thermal resistance on flame characteristics. Also, effect of particle size on combustion of micro organic dust is investigated. According to obtained results, it is understood that both flame temperature and burning velocity decrease with rise in the Biot number and particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DINCER I. Renewable energy and sustainable development: A crucial review [J]. Renew Sustain Energy Rev., 2000, 4: 157–175.

    Article  Google Scholar 

  2. SORENSEN B. Renewable energy [M]. 3rd ed. UK: Elsevier Science, 2004: 14–28.

    MATH  Google Scholar 

  3. ABDULLAH S, YOUSIF B F, SOPIAN K. Design consideration of low temperature differential double acting stirling engine for solar application [J]. Renew Energy, 2005, 30: 1923–1941.

    Article  Google Scholar 

  4. KARABULUT H, YUCESU H S, CINAR C, AKSOY F. An experimental study on the development of -type stirling engine for low and moderate temperature heat sources [J]. Applied Energy, 2009, 86: 68–73.

    Article  Google Scholar 

  5. DATTA A, GANGULY R, SARKAR L. Energy and exergy analyses of an externally fired gas turbine (EFGT) cycle integrated with biomass gasifier for distributed power generation [J]. Energy, 2010, 35(1): 341–350.

    Article  MATH  Google Scholar 

  6. ZHAO W, LI Z, ZHAO G, ZHANG F, ZHU Q. Effect of air preheating and fuel moisture on combustion characteristics of corn straw in a fixed bed [J]. Energy Conversion and Management, 2008, 49: 3560–3565.

    Article  MATH  Google Scholar 

  7. CARLSEN H, AMMUNDES N, TRAERUP J. 40 kW stirling engine for solid fuel [C]// Proceedings of the Intersociety Energy Conversion Engineering Conference Washington, 1996: 23–34.

    Google Scholar 

  8. JENSEN N, WERLING J. CHP from updraft gasifier and stirling engine [C]// Proceedings of 12th European Biomass Conference. 2002: 31–149.

    Google Scholar 

  9. LANE N, BEALE W. Micro-biomass electric power generation [C]// Proceedings of the 3rd Biomass Conference of the America. 1997: 83–104.

    Google Scholar 

  10. PROUST C. Dust explosions in pipes: A review [J]. Journal of Loss Prevention in the Process Industries, 1996, 9(4): 267–277.

    Article  Google Scholar 

  11. BIDABADI M, MOSTAFAVI S A, BEIDAGHY DIZAJI H, FARAJI DIZAJI F. Lycopodium dust flame characteristics considering char yield [J]. Scientia Iranica, 2013, 20(6): 1781–1791.

    Google Scholar 

  12. BIDABADI M, FARAJI DIZAJI F, BEIDAGHY DIZAJI H, SAFARI GHAHSAREH M. Investigation of effective dimensionless numbers on initiation of instability in combustion of moisty organic dust [J]. Journal of Central South University, 2014, 21: 326–337.

    Article  Google Scholar 

  13. HAN O S, YASHIMA M, MATSUDA T, MATSUI H, MIYAKE A, OGAWA T. Behavior of flames propagating through lycopodium dust clouds in a vertical duct [J]. Journal of Loss Prevention in the Process Industries, 2000, 13: 449–457.

    Article  Google Scholar 

  14. PROUST C. Flame propagation and combustion in some dust-air mixtures [J]. Journal of Loss Prevention in the Process Industries, 2006, 19: 89–100.

    Article  Google Scholar 

  15. van WINGERDEN K, STAVSENG L, BERGEN N. Measurements of the laminar burning velocities in dust-air mixtures [OL]. [1996]. http://www2.gexcon.com/download/VDI2.pdf.

    Google Scholar 

  16. BEIDAGHY DIZAJI H, FARAJI DIZAJI F, BIDABADI M. Determining thermo-kinetic constants using thermogravimetric analysis in order to classify explosivity of foodstuffs [J]. Combustion, Explosion, and Shock Waves, 2014, 50(4): 454–462.

    Article  Google Scholar 

  17. SESHADRI K, BERLAD A L, TANGIRALA V. The structure of premixed particle-cloud flames [J]. Combustion and Flame, 1992, 89: 333–342.

    Article  Google Scholar 

  18. BIDABADI M, RAHBARI A. Modeling combustion of lycopodium particles by considering the temperature difference between the gas and the particles [J]. Combustion, Explosion, and Shock Waves, 2009, 45(3): 278–285.

    Article  Google Scholar 

  19. BIDABADI M, SHAKIBI A, RAHBARI A. The radiation and heat loss effects on the premixed flame propagation through lycopodium dust particles [J]. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42: 180–185.

    Article  Google Scholar 

  20. BIDABADI M, RASTEGAR MOGHADDAM M, MOSTAFAVI S A, FARAJI DIZAJI F, BEIDAGHY DIZAJI H. An analytical model for pyrolysis of a single biomass particle [J]. Journal of Central South University, 2015, 22: 350–359.

    Article  Google Scholar 

  21. BIDABADI M, MOSTAFAVI S A, FARAJI DIZAJI F, BEIDAGHY DIZAJI H. An analytical model for flame propagation through moist lycopodium particles with non-unity Lewis number [J]. International Journal of Engineering, 2014, 27(5): 793–802.

    Google Scholar 

  22. BEIDAGHY DIZAJI H, BIDABADI M. Analytical study about the kinetics of different processes in pyrolysis of lycopodium dust (in persian) [J]. Journal of Fuel and Combustion, 2014, 6(2): 13–20.

    Google Scholar 

  23. BEIDAGHY DIZAJI H, BIDABADI M, FARAJI DIZAJI F, MOSTAFAVI S A. Effect of dimensionless numbers on production of energy from moisty organic dust particles [J]. JCP Engineering Technology, 2014, 1(1): 14–17.

    Google Scholar 

  24. FARAJI DIZAJI F, BIDABADI M, BEIDAGHY DIZAJI H, MOSTAFAVI S A. Effect of thermal radiation on modeling of moisty organic dust combustion [J]. Journal of Automotive and Applied Mechanics, 2014, 2(2): 4–8.

    Google Scholar 

  25. BIDABADI M, BEIDAGHY DIZAJI H, FARAJI DIZAJI F, SAFARI GHAHSAREH M. Effect of thermal radiation on initiation of flame instability in moisty organic dust combustion [C]// Proceedings of the 20th Annual International Conference on Mechanical Engineering (ISME). Shiraz, Iran: Shiraz University, 2012.

    Google Scholar 

  26. BIDABADI M, FARAJI DIZAJI F, BEIDAGHY DIZAJI H, SAFARI GHAHSAREH M. Investigation of effective parameters on flame instability in combustion of organic dust [C]// Proceedings of the 20th Annual International Conference on Mechanical Engineering (ISME). Shiraz, Iran: Shiraz University, 2012.

    Google Scholar 

  27. ECKHOFF R K. Dust explosions in the process industries [M]. Second ed. Oxford: Butterworth Heinemann, 1997.

    Google Scholar 

  28. HAN O S. Flame propagation characteristics through suspended combustion particles in a full-scaled dust [J]. Korean Chem Eng Res, 2009, 47(5): 572–579.

    Google Scholar 

  29. KUBALA T A, PERZAK F J, LITCHFIELD E L. Electric ignition of lycopodium powder in a modified Hartmann apparatus [C]// Bureau of Mines RI. 1981: 9.

    Google Scholar 

  30. HAN O S, HAN I S, CHOI Y R. Prediction of flame propagation velocity based on the behavior of dust particles [J]. Korean Chem Eng Res, 2009, 47(6): 705–709.

    Google Scholar 

  31. PRAKASH N, KARUNANITHI T. Advances in modeling and simulation of biomass pyrolysis [J]. Asian Journal of Scientific Research, 2009, 2: 1–27.

    Article  Google Scholar 

  32. BIDABADI M, BEIDAGHY DIZAJI H, FARAJI DIZAJI F, MOSTAFAVI S A. A parametric study of lycopodium dust flame [J]. Journal of Engineering Mathematics, 2015, 92: 147–165.

    Article  MathSciNet  Google Scholar 

  33. BEIDAGHY DIZAJI H. Analysis of the effect of dimensionless numbers on organic dust combustion [D]. Iran University of Science and Technology (IUST), 2011.

    Google Scholar 

  34. BEIDAGHY DIZAJI H, BIDABADI M. Investigation of the effect of organic Lycopodium particles size on dimensionless numbers in combustion phenomena (in Persian) [C]// Proceedings of the 3rd Iran Bioenergy Conference Tehran, Iran: Civilica, 2012.

    Google Scholar 

  35. BIDABADI M, BEIDAGHY DIZAJI H, FARAJI DIZAJI F. Analysis of drying and pyrolysis kinetics of lycopodium in combustion phenomenon (in Persian) [C]// Proceedings of the First National Conference of New and Clean Energy. Hamedan, Iran: Civilica, 2013.

    Google Scholar 

  36. BIDABADI M, SOLTANINEJAD M, BEIDAGHY DIZAJI H, FARAJI DIZAJI F. Analysis of the effect of porosity on the combustion of lycopodium particles (in Persian) [C]// Proceedings of the 21st Annual International Conference on Mechanical Engineering (ISME), K N. Tehran, Iran: Toosi University of Technology, 2013.

    Google Scholar 

  37. SADEGHLU A, YARI M, MAHMOUDI S, DIZAJI H. Performance evaluation of zeolite 13X/CaCl2 two-bed adsorption refrigeration system [J]. International Journal of Thermal Sciences, 2014, 80: 76–82.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Beidaghy Dizaji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltaninejad, M., Dizaji, F.F., Dizaji, H.B. et al. Micro-organic dust combustion considering particles thermal resistance. J. Cent. South Univ. 22, 2833–2840 (2015). https://doi.org/10.1007/s11771-015-2815-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-015-2815-0

Key words

Navigation