Skip to main content
Log in

Experimental investigation on semicircular, triangular and rectangular shaped absorber of solar still with nano-based PCM

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper shows the results of a novel research conducted with the overall aim of developing a system that can provide continuous desalination. Productivity enhancement of solar stills is regarded as the main purpose of the investigators in desalination field. This paper represents the experimental results in a new approach of paraffin + graphene oxide nanoparticles mixture. The paraffin mixture in a semicircular, triangular and rectangular absorber with paraffin + graphene oxide of 0.1, 0.3 and 0.5 mass% has been investigated. The finding indicated that for all absorbers, the use of paraffin + graphene oxide in higher mass fractions enhances daily freshwater production. The results showed that the thermal performances are greater applying graphene oxide + paraffin of 0.5 mass% with semicircular absorber compared to triangular and rectangular absorber. The achievement of the present paper can be implemented to design more efficient absorbers for solar still parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

b :

Constant of Brownian motion (5 × 104)

c p :

Heat capacity (J kg1 K1)

d np :

Diameter of nanoparticles (nm)

f :

Liquid fraction

k :

Thermal conductivity (W m1 K1)

K :

Constant of Boltzmann (1.381 × 1023 J K1)

w :

Width (m)

T :

Temperature (°C or K)

h :

Coefficient of heat transfer (Wm2 K1)

h w :

Coefficient of heat transfer due to wind (W m2 K1)

L :

Latent heat of water vaporization (kJ kg1)

\(\dot{m}_{{\text{e,w}}}\) :

Fresh water (kgm2 day1

γ :

Brownian motion parameter

\(\rho\) :

Density (kgm3)

\(\mu\) :

Dynamic viscosity (kgm1 s1)

\(\emptyset\) :

Volume fraction of nanoparticles

a:

Ambient air

b:

Basin

cond:

Conduction

conv:

Convection

np:

Nanoparticles

nepcm:

Nanoparticle-enhanced phase changed materials (Nano + PCM)

pcm:

Phase changed materials

e:

Evaporation

i:

Inner

g:

Glass

l:

Liquid

p:

Plate

r:

Radiation

ref:

Reference

w:

Water

References

  1. Chen Y, Nguyen D, Shen M, Yip M, Tai N. Thermal characterizations of the graphite nanosheets reinforced paraffin phase change composites. Compos Part A. 2015;44:40–6.

    Article  Google Scholar 

  2. Wahid MA. An overview of phase change materials for construction architecture thermal management in hot and dry climate region. Appl Therm Eng. 2017;112:1240–59.

    Article  CAS  Google Scholar 

  3. Weiguang S, Darkwa J, Kokogiannakis G. Review of solid–liquid phase change materials and their encapsulation technologies. Renew Sustain Energy Rev. 2015;48:373–91.

    Article  Google Scholar 

  4. Hassab MA. Effect of volume expansion on the melting process’s thermal behavior. Appl Therm Eng. 2017;115:350–62.

    Article  CAS  Google Scholar 

  5. Safaei MR, Goshayeshi HR, Chaer I. Solar still efficiency enhancement by using graphene oxide/paraffin composite. Int J Energies. 2019;12:2002.

    Article  CAS  Google Scholar 

  6. Goshayeshi HR, Safaei MR. Effect of absorber plate surface shape and glass cover inclination angle on the performance of a passive solar still. Int J Numer Methods Heat Fluid Flow. 2019;30:3183–98.

    Article  Google Scholar 

  7. Li Z, Shahsavar A, Al-Rashed A, Talebizadehsardari P. Effect of porous medium and nanoparticles presences in a counter-current triple-tube composite porous/nano-PCM system. Appl Therm Eng. 2019. https://doi.org/10.1016/j.applthermaleng.2019.114777.

    Article  Google Scholar 

  8. Ebrahimnataj Tiji M, Yousefzadeh R, Eisapour M, Azadian M, Talebizadehsardari P. A numerical study of a PCM-based passive solar chimney with a finned absorber. J Build Eng. 2020. https://doi.org/10.1016/j.jobe.2020.101516.

    Article  Google Scholar 

  9. Selimefendigil F, Oztop HF. Hydro-thermal performance of CNT nanofluid in double backward facing step with rotating tube bundle under magnetic field. Int J Mech Sci. 2020. https://doi.org/10.1016/j.ijmecsci.2020.105876.

    Article  Google Scholar 

  10. Hayder I, Talebizadehsardari P, Mahdi J, Arshad A, Sciacovelli A, Giddings D. Improved melting of latent heat storage via porous medium and uniform Joule heat generation. J Energy Storage. 2020;31:101747.

    Article  Google Scholar 

  11. Hajizadeh MR, Selimefendigil F, Muhammad T, Ramzan M, Babazadeh H, Li Z. Solidification of PCM with nano powders inside a heat exchanger. J Mol Liq. 2020;306:112892.

    Article  CAS  Google Scholar 

  12. Chamkha A, Veismoradi A, Ghalambaz M, Talebizadehsardari P. Phase change heat transfer in an L-Shape heatsink occupied with paraffincopper metal foam. Appl Therm Eng. 2020;177:115493.

    Article  CAS  Google Scholar 

  13. Talebizadeh Sardari P, Giddings D, Grant D, Gillott M, Walker GS. Discharge of a composite metal foam/phase change material to air heat exchanger for a domestic thermal storage unit. Renew Energy. 2019. https://doi.org/10.1016/j.renene.2019.10.084.

    Article  Google Scholar 

  14. Selimefendigil F, Öztop HF. Mixed convection in a PCM filled cavity under the influence of a rotating cylinder. Sol Energy. 2019;200:61–75.

    Article  Google Scholar 

  15. Mehryan S, Vaezi M, Sheremet M, Ghalambaz M. Melting heat transfer of power-law non-Newtonian phase change nano-enhanced n-octadecane-mesoporous silica (MPSiO2). Int J Heat Mass Transf. 2020;151:119385.

    Article  CAS  Google Scholar 

  16. Talebizadeh Sardari P, Babaei-Mahani R, Giddings D, Yasseri S, Moghimi MA, Bahai H. Energy recovery from domestic radiators using a compact composite metal Foam/PCM latent heat storage. J Clean Prod. 2020;257:120504.

    Article  Google Scholar 

  17. Selimefendigil F, Hakan F, Oztop HO, Chamkha AJ. Natural convection in a CuO–water nanofluid filled cavity under the effect of an inclined magnetic field and phase change. Journal of material (PCM) attached to its vertical wall. Therm Anal Calorim. 2019;135:1577–94.

    Article  CAS  Google Scholar 

  18. Jifen W, Huaqing X, Zhong X. Thermal properties of paraffin based composites containing multi- walled carbon nanotubes. Thermochim Acta. 2009;488:39–42.

    Article  Google Scholar 

  19. Arasu AV, Sasmito AP, Mujmdar AS. Numerical performance study of paraffin wax dispersed with alumina in a concentric pipe latent heat storage system. Therm Sci. 2013;17:419–30.

    Article  Google Scholar 

  20. Li Z, Sun WG, Wang G, Wu ZG. Experimental and numerical study on the effective thermal conductivity of paraffin/expanded graphite composite. Sol Energy Mater Sol Cells. 2014;128:447–55.

    Article  CAS  Google Scholar 

  21. Sahan N, Fois M, Paksoy H. Improving thermal conductivity phase change materials—a study of paraffin nanomagnetite composites. Sol Energy Mater Sol Cells. 2015;137:61–7.

    Article  CAS  Google Scholar 

  22. Nourani M, Hamdami N, Keramat J, Moheb A, Shahedi M. Thermal behavior of paraffin- nano-Al2O3 stabilized sodium stearoyl lactylate as a stable phase change material with high thermal conductivity. Renew Energy. 2016;88:474–82.

    Article  CAS  Google Scholar 

  23. Karaipekli A, Bicer A, Sati A, Tyagi V. Thermal characteristics of expanded perlite/ paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy Convers Manage. 2017;134:373–81.

    Article  CAS  Google Scholar 

  24. Rufuss D, Iniyan S, Suganthi L, Davies PA. Nanoparticles enhanced phase change material (NPCM) as heat storage in solar still application for productivity enhancement. Energy Procedia. 2017;141:45–9.

    Article  Google Scholar 

  25. Arıcı M, Tütüncü E, Kan M, Karabay H. Melting of nanoparticle-enhanced paraffin wax in a rectangular enclosure with partially active walls. Int J Heat Mass Transf. 2017;104:7–17.

    Article  Google Scholar 

  26. Kabeel AE, Sathyamurthy R, Manokar A, Sharshir S, Essa F, Elshiekh A. Experimental study on tubular solar still using Graphene Oxide Nano particles in Phase Change Material (NPCM’s) for fresh water production. J Energy Storage. 2020;28:101204.

    Article  Google Scholar 

  27. Selvan C, Mohan D, Harish S. Thermal conductivity of ethylene glycol and water with graphene nonoplatelets. Thermochim Acta. 2016;642:32–8.

    Article  Google Scholar 

  28. Mahdi JM, Nsofor EC. Solidification of a PCM with nanoparticles in triplex-tube thermal energy storage system. Appl Therm Eng. 2016;108:596–604. https://doi.org/10.1016/j.applthermaleng.2016.07.130.

    Article  CAS  Google Scholar 

  29. Kabeel AE, Abdelgaied M, Eisa A. Effect of graphite mass concentration in a mixture of graphite nanoparticles and paraffin wax as hybrid storage materials on performance of solar still. Renew Energy. 2019;132:119–28.

    Article  CAS  Google Scholar 

  30. Sampathkumar K, Senthilkumar P. Utilization of solar water heater in a single basin solar still—an experimental study. Desalination. 2012;297:8–19.

    Article  CAS  Google Scholar 

  31. Mohammadi K, Khorasanizadeh H. A review of solar radiation on vertically mounted solar surfaces and proper azimuth angles in six Iranian major cities. Renew Sustain Energy Rev. 2015;47:504–18.

    Article  Google Scholar 

  32. Panchal H, Patel S. An extensive review on different design and climatic parameters to increase distillate output of solar still. Renew Sustain Energy Rev. 2017;69:750–8.

    Article  Google Scholar 

  33. Dhaidan S, Khodadadi JM. Melting and convection of phase change materials in different shape containers: a review. Renew Sustain Energy Rev. 2015;43:449–77.

    Article  CAS  Google Scholar 

  34. Yang Y, Zhao R, Zhang T, Zhao K, Xiao P, Ma Y, Ajayan PM, Shi G, Chen Y. Graphene-based standalone solar energy converter for water desalination and purification. ACS Nano. 2018;12:829–35.

    Article  CAS  Google Scholar 

  35. Hashem Zadeh SM, Mehryan SAM, Ghalambaz M, Ghodrat M, Young J, Chamkha A. Hybrid thermal performance enhancement of a circular latent heat storage system by utilizing partially filled copper foam and Cu/GO nano-additives. Energy. 2020;213:118761.

    Article  CAS  Google Scholar 

  36. Hajjar A, Mehryan SAM, Ghalambaz M. Time periodic natural convection heat transfer in a nano-encapsulated phase-change suspension. Int J Mech Sci. 2019. https://doi.org/10.1016/j.ijmecsci.2019.105243.

    Article  Google Scholar 

  37. Mehryan SAM, Ayoubi-Ayoubloo K, Shahabadi M, Ghalambaz M, Talebizadehsardari P, Chamkha A. Conjugate phase change heat transfer in an inclined compound cavity partially filled with a porous medium: a deformed mesh approach. Transp Porous Media. 2020;132:657–81. https://doi.org/10.1007/s11242-020-01407-y.

    Article  CAS  Google Scholar 

  38. Ghalambaz M, Hashem-Zadeh SM, Mehryan SAM, Pop I, Wen D. Analysis of melting behavior of PCMs in a cavity subject to a non-uniform magnetic field using a moving grid technique. Appl Math Model. 2019;77:1936–53.

    Article  Google Scholar 

  39. Chen Z, Peng J, Chen G, Hou L, Yu T, Yao Y, Zheng H. Analysis of heat and mass transferring mechanism of multi-stage stacked-tray solar seawater desalination still and experimental research on its performance. Sol Energy. 2017;142:278–87.

    Article  Google Scholar 

  40. Selimefendigil F, Öztop HF, Al-Salem K. Natural convection of ferrofluids in partially heated square enclosures. J Magn Magn Mater. 2014;372:122–33.

    Article  CAS  Google Scholar 

  41. Safaei MR, Goshayeshi HR, Chaer I. Solar still efficiency enhancement by using graphene oxide/paraffin nano-PCM. Int J Energy. 2019;12:2002. https://doi.org/10.3390/en12102002.

    Article  CAS  Google Scholar 

  42. Askari S, Koolivand H, Pourkhalil M, Lotfi R, Rashidi A. Investigation of Fe3O4/graphene nanohybride heat transfer properties: experimental approach. Int Commun Heat Mass Transf. 2017;87:30–9.

    Article  CAS  Google Scholar 

  43. Oztop HF, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int J Heat Fluid Flow. 2008;29:1326–36.

    Article  Google Scholar 

  44. Davari H, Goshayeshi HR, Oztop HF, Chaer I. Experimental investigation of oscillating heat pipe efficiency for a novel condenser by using Fe3O4 nanofluid. J Therm Anal Calorim. 2019;113:1–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Goshayeshi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goshayeshi, H.R., Chaer, I., Yebiyo, M. et al. Experimental investigation on semicircular, triangular and rectangular shaped absorber of solar still with nano-based PCM. J Therm Anal Calorim 147, 3427–3439 (2022). https://doi.org/10.1007/s10973-021-10728-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10728-z

Keywords

Navigation