Skip to main content
Log in

Synthesis and characterization of Al3+ substituted Ni–Cu–Zn nano ferrites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ferro spinels with composition Ni0.2Cu0.2Zn0.6Fe2−xAlxO4 (x = 0.0 to 1.0 in steps of 0.2) were synthesized by co-precipitation method, in oxygen atmosphere, from corresponding analytical grade metal sulfates. Thermogravimetric (TG) analysis shows total mass loss around 30% up to 873 K temperature. X-ray diffraction studies confirm all composition with single-phase spinel, cubic structure with crystallite size 11–21 nm range. With increasing trivalent Al3+ content, lattice parameter ‘a’ decreases. Infrared spectra shown two major absorption bands, the lower frequency band ν2 observed in the range 433–463 cm−1, is assigned to octahedral site and higher frequency band ν1 observed in the range 565–593 cm−1, assigned tetrahedral site. The microstructures of the calcinated samples investigated by scanning electron microscopy and transmission electron microscopy indicate ferrite samples are porous in nature. The magnetic properties such as saturation magnetization and magneton number decrease with increasing Al3+ concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Sutka A, Mezinskis G. Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials. Front Mater Sci. 2012;6(2):128–41.

    Article  Google Scholar 

  2. Slimani Y, Almessiere MA, Sertkol M, Shirsath SE, Baykal A, Nawaz M, Ercan I. Structural, magnetic, optical properties and cation distribution of nanosized Ni0.3Cu0.3Zn0.4TmxFe2−xO4 (0.0≤ x≤ 0.10) spinel ferrites synthesized by ultrasound irradiation. Ultrason Sonochem. 2019;57:203–11.

    Article  CAS  PubMed  Google Scholar 

  3. Shinde VS, Vinayak V, Jadhav SP, Shinde ND, Humbe AV, Jadhav KM. Structure, morphology, cation distribution and magnetic properties of Cr3+ substituted CoFe2O4 nanoparticles. J Supercond Nov Magn. 2019;32(4):945–55.

    Article  CAS  Google Scholar 

  4. Ozawa E. Microwave-assisted magnetization reversal in dispersed nanosized barium ferrite particles for high-density magnetic recording tape. IEEE Trans Magn. 2019;55(7):1–4.

    Article  Google Scholar 

  5. Mutkule SU, Tehare KK, Gore SK, Gunturu KC, Mane RS. Ambient temperature operable BiCo ferrite, NO2 sensors with high sensitivity and selectivity. Mater Res Bull. 2019;115:150–8.

    Article  CAS  Google Scholar 

  6. Dippong T, Levei EA, Goga F, Petean I, Avram A, Cadar O. The impact of polyol structure on the formation of Zn0.6Co0.4Fe2O4 spinel-based pigments. J Sol-Gel Sci Technol. 2019;92(3):736–44.

    Article  CAS  Google Scholar 

  7. Shinde BL, Dhale LA, Mandle UM, Lohar KS. An efficient one-pot synthesis of benzimidazoles using magnetically recoverable catalyst chromium doped nickel copper zinc spinel ferrite. Int Res J Pharm. 2019;10(8):50–5.

    Article  CAS  Google Scholar 

  8. Faraji S, Dini G, Zahraei M. Polyethylene glycol-coated manganese-ferrite nanoparticles as contrast agents for magnetic resonance imaging. J Magn Magn Mater. 2019;475:137–45.

    Article  CAS  Google Scholar 

  9. Kharat PB, More SD, Somvanshi SB, Jadhav KM. Exploration of thermoacoustics behavior of water based nickel ferrite nanofluids by ultrasonic velocity method. J Mater Sci Mater Electron. 2019;30(7):6564–74.

    Article  CAS  Google Scholar 

  10. Kefeni KK, Msagati TA, Nkambule TT, Mamba BB. Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity. Mater Sci Eng C. 2020;107:110314.

    Article  CAS  Google Scholar 

  11. Shahzadi K, Chandio AD, Mustafa G, Khalid M, Khan JK, Akhtar MS, Gilani ZA. Impact of aluminum substitution on the structural and dielectric properties of Ni–Cu spinel ferrite nanoparticles synthesized via sol–gel route. Opt Quantum Electron. 2020;52(4):1–17.

    Article  Google Scholar 

  12. Thorat LM, Patil JY, Nadargi DY, Kambale RC, Suryavanshi SS. Ni2+ substituted Mg-Cu-Zn ferrites by molten salt route: evaluation of structural, morphological and electromagnetic properties. Inorg Chem Commun. 2019;99:20–5.

    Article  CAS  Google Scholar 

  13. Demir L, Perişanoğlu U, Şahin M. Investigating XRF parameters and valance electronic structure of the Co, Ni, and Cu spinel ferrites. Ceram Int. 2019;45(6):7748–53.

    Article  CAS  Google Scholar 

  14. Hossain MS, Akter Y, Shahjahan M, Bashar MS, Begum MHA, Hossain MM, Al-Mamun M. Influence of Ni substitution on structural, morphological, dielectric, magnetic and optical properties of Cu–Zn ferrite by double sintering sol–gel technique. J Adv Dielec. 2019;9(2):1950020.

    Article  CAS  Google Scholar 

  15. Rao PVS, Anjaneyulu T, Reddy MR. Effect of Gd doping on the structural and magnetic properties of Ni–Cu–Zn–Fe2O4. J Korean Phys Soc. 2019;75(4):304–8.

    Article  CAS  Google Scholar 

  16. Satyanarayana G, Rao GN, Babu KV, Kumar GS, Reddy GD. Effect of Cr3+ substitution on the structural, electrical and magnetic properties of Ni0.7Zn0.2Cu0.1Fe2–xCrxO4 ferrites. J Korean Phys Soc. 2019;74(7):684–94.

    Article  CAS  Google Scholar 

  17. Penke YK, Tiwari N, Jha S, Bhattacharyya D, Ramkumar J, Kar KK. Arsenic surface complexation behavior in aqueous systems onto Al substituted Ni Co, Mn, and Cu based ferrite nano adsorbents. J Hazard Mater. 2019;361:383–93.

    Article  CAS  PubMed  Google Scholar 

  18. Gandhad SS, Patil PM, Mathad SN, Hublikar LV, Jeergal PR, Pujar RB. Effect of aluminum doping on structural and mechanical properties of Ni–Mg ferrites. Int J Self-Propa High-Temp Synth. 2019;28(4):271–3.

    Article  Google Scholar 

  19. Shinde BL, Dhale LA, Suryavanshi VS, Lohar KS. Preparation and characterization of chromium-doped Ni–Cu–Zn nano ferrites. Acta Chim Slov. 2017;64(4):931–7.

    Article  CAS  PubMed  Google Scholar 

  20. Lassoued A, Lassoued MS, Dkhil B, Ammar S, Gadri A. Substituted effect of Al3+ on structural, optical, magnetic and photocatalytic activity of Ni ferrites. J Magn Magn Mater. 2019;476:124–33.

    Article  CAS  Google Scholar 

  21. Msomi JZ, Moyo T, Mahule S, Srinivasu VV. Electron spin resonance study of ZnxCo1–xFeAlO4 nanoparticles. J Supercond Nov Magn. 2019;32(6):1817–20.

    Article  CAS  Google Scholar 

  22. Chilwar RR, Chavan AR, Babrekar MK, Jadhav KM. Impact of trivalent metal ion substitution on structural, optical, magnetic and dielectric properties of Li0.5Fe2.5O4 thin films. Physica B Condens Matter. 2019;566:43–9.

    Article  CAS  Google Scholar 

  23. Pervaiz E, Gul IH. Low temperature synthesis and enhanced electrical properties by substitution of Al3+ and Cr3+ in Co–Ni nanoferrites. J Magn Magn Mater. 2013;343:194–202.

    Article  CAS  Google Scholar 

  24. Pandit R, Sharma KK, Kaur P, Kotnala RK, Shah J, Kumar R. Effect of Al3+ substitution on structural, cation distribution, electrical and magnetic properties of CoFe2O4. J Phys Chem Solids. 2014;75(4):558–69.

    Article  CAS  Google Scholar 

  25. Majeed A, Khan MA, Lodhi MY, Ahmad R, Ahmad I. Structural, microwave permittivity, and complex impedance studies of cation (Cr, Bi, Al, In) substituted SrNi-X hexagonal nano-sized ferrites. Ceram Int. 2020;46(2):1907–15.

    Article  CAS  Google Scholar 

  26. Kouki N, Hcini S, Boudard M, Aldawas R, Dhahri A. Microstructural analysis, magnetic properties, magnetocaloric effect, and critical behaviors of Ni0.6Cd0.2Cu0.2Fe2O4 ferrites prepared using the sol–gel method under different sintering temperatures. RSC Adv. 2020;9(4):1990–2001.

    Article  Google Scholar 

  27. Hu SL, Liu J, Yu HY, Liu ZW. Synthesis and properties of barium ferrite nano-powders by chemical co-precipitation method. J Magn Magn Mater. 2019;473:79–84.

    Article  CAS  Google Scholar 

  28. Szczygiel I, Winiarska K. Synthesis and characterization of manganese-zinc ferrite obtained by thermal decomposition from organic precursors. J Therm Anal Calorim. 2014;115:471–7.

    Article  CAS  Google Scholar 

  29. Naresh U, Kumar RJ, Naidu KCB. Hydrothermal synthesis of barium copper ferrite nanoparticles: nanofiber formation, optical, and magnetic properties. Mater Chem Phys. 2019;236:121807.

    Article  CAS  Google Scholar 

  30. Ganure KA, Dhale LA, Shirsat SE, Lohar KS. Morphological study of lanthanum-doped nano spinel ferrite via normal micelles method. J Inorg Organomet Polym Mater. 2018;28(5):1821–8.

    Article  CAS  Google Scholar 

  31. Andhare DD, Patade SR, Kounsalye JS, Jadhav KM. Effect of Zn doping on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via co-precipitation method. Phys B Condens Matter. 2020;583:412051.

    Article  CAS  Google Scholar 

  32. Nasrin S, Chowdhury FUZ, Hoque SM. Study of hyperthermia temperature of manganese substituted cobalt nano ferrites prepared by chemical co-precipitation method for biomedical application. J Magn Magn Mater. 2019;479:126–34.

    Article  CAS  Google Scholar 

  33. Kurian M, Thankachan S, Nair DS, Aswathy EK, Babu A, Thomas A, BK KT. KT Structural, magnetic, and acidic properties of cobalt ferrite nanoparticles synthesised by wet chemical methods. J Adv Ceram. 2015;4(3):199–205.

    Article  CAS  Google Scholar 

  34. Ikram S, Arshad MI, Mahmood K, Ali A, Amin N, Ali N. Structural, magnetic and dielectric study of La3+ substituted Cu0.8Cd0.2Fe2O4 ferrite nanoparticles synthesized by the co-precipitation method. J Alloys Compd. 2018;769:1019–25.

    Article  CAS  Google Scholar 

  35. Roos W. Formation of chemically coprecipitated barium ferrite. J Am Ceram. 1980;63:601–3.

    Article  CAS  Google Scholar 

  36. Sawant DK, Patil HM, Bhavsar DS, Patil JH, Girase KD. Growth and thermal studies of mixed crystals of Ca–Ba tartrate in silica gel. Arch Appl Sci Res. 2011;3(2):404–13.

    CAS  Google Scholar 

  37. Lohar KS, Patange SM, Mane DR, Shirsath SE, Shinde ND, Kulkarni N. Physico-chemical, structural and electrical studies of Cu–Zn ferrites synthesized by novel chemical route. Int J Mod Phys B. 2011;25(16):2157–66.

    Article  CAS  Google Scholar 

  38. Cullity BD. Elements of X-ray diffraction. London: Addison-Wesley Publisher Company; 1959.

    Google Scholar 

  39. Patange SM, Shirsath SE, Jangam GS, Lohar KS, Jadhav SS, Jadhav KM. Rietveld structure refinement, cation distribution and magnetic properties of Al3+ substituted NiFe2O4 nanoparticles. J Appl Phys. 2011;109(5):053909.

    Article  Google Scholar 

  40. Yousif AA, Elzain ME, Mazen SA, Sutherland HH, Abdalla MH, Masour SF. A Mossbauer and X-ray diffraction investigation of Li–Ti ferrites. J Condens Matter Phys. 1994;6(29):5717.

    Article  CAS  Google Scholar 

  41. Waldron RD. Infrared spectra of ferrites. Phys Rev. 1955;99(6):1727.

    Article  CAS  Google Scholar 

  42. Gorter EW. Saturation magnetization and crystal chemistry of ferrimagnetic oxides, theory of ferrimagnetism. Philips Res Rep. 1954;9:295–320.

    CAS  Google Scholar 

  43. Pawar RA, Patange SM, Shirsath SE. Spin glass behavior and enhanced but frustrated magnetization in Ho3+ substituted Co–Zn ferrite interacting nanoparticles. RSC Adv. 2016;6(80):76590–9.

    Article  CAS  Google Scholar 

  44. Neel L. Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Ann Phys. 1948;3:137–98.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Lohar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinde, B.L., Mandle, U.M., Pachpinde, A.M. et al. Synthesis and characterization of Al3+ substituted Ni–Cu–Zn nano ferrites. J Therm Anal Calorim 147, 2947–2956 (2022). https://doi.org/10.1007/s10973-021-10719-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10719-0

Keywords

Navigation