Skip to main content
Log in

Synthesis and characterization of geopolymer-zeolites from Ghanaian Kaolin samples by variation of two synthesis parameters

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Two kaolinitic clays from two Regions of Ghana: Western and Volta Regions, were first calcined at 600 °C for 2 h to transform into the amorphous aluminosilicate phases. The effects of kaolin and alkali ratio as well as aging on the amount and types of zeolite in the resultant geopolymers were characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transformed spectroscopy, thermogravimetric analysis and specific surface area measurements. Alkali activation treatment of the metakaolin yielded bulk materials with different amounts and types of zeolite and different particle size distributions. The results showed that initial kaolin samples were dependent on the concentration of alkali treatment and crystallization time during the activation treatment and produced zeolite type A along with quartz which showed no reactivity regardless of the variation of the synthesis parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Murat M, Amokrane A, Bastide J, Montanaro L. Synthesis of zeolites from thermally activated kaolinite. Some observations on nucleation and growth. Clay Miner. 1992;27:119–30. https://doi.org/10.1180/claymin.1992.027.1.12.

    Article  CAS  Google Scholar 

  2. Murray HH. Applied clay mineralogy - occurrences, processing and application of kaolins, bentonites, palygorskite-sepiolite, and common clays. Appl Clay Miner. 2006;2006(2):7–31.

    Google Scholar 

  3. Ríos CA, Williams CD, Castellanos OM. Crystallization of low silica Na-A and Na-X zeolites from transformation of kaolin and obsidian by alkaline fusion. Ing Compet. 2012;137(2):125–37.

    Google Scholar 

  4. Wong H, et al. Characterization and thermal behaviour of kaolin. J Therm Anal and Calorim. 2011;105:157–60. https://doi.org/10.1007/s10973-011-1385-0.

    Article  CAS  Google Scholar 

  5. Granizo ML, Blanco-Varela MT, Martinez-Ramirez S. Alkali activation of metakaolins: parameters affecting mechanical, structural and microstructural properties. J Mater Sci. 2007;42:2934–43. https://doi.org/10.1007/s10853-006-0565-y.

    Article  CAS  Google Scholar 

  6. Diffoa BBK, Elimbia A, Cyrb M, Mangac JD, Kouamoa HTJ. Effect of the rate of calcination of kaolin on the properties of metakaolin-based geopolymers. J Asian Ceram Soc. 2015;3:130–8. https://doi.org/10.1016/j.jascer.2014.12.003.

    Article  Google Scholar 

  7. Subaer A. Thermo-mechanical and microstructural characterisation of sodium-poly (sialate-siloxo) (Na-PSS) geopolymers. J Mater Sci. 2007;42:3117–23.

    Article  CAS  Google Scholar 

  8. Kovo AS, Holmes SM. Effect of aging on the synthesis of Kaolin-Based Zeolite Y from Ahoko Nigeria using a novel metakaolinization technique. J Dispers Sci Technol. 2010;31(4):442–8. https://doi.org/10.1080/01932690903210218.

    Article  CAS  Google Scholar 

  9. Kwakye-Awuah B, Kwakye R, Sefa-Ntiri B, Nkrumah I, Von-Kiti E, Williams C. Comparison of the recycling efficiency of metakaolin and laboratory-synthesized zeolite types LTA and LSX on used lubricant engine oil. Appl Phys Res. 2018;10(4):11–21. https://doi.org/10.5539/apr.v10n4p11.

    Article  CAS  Google Scholar 

  10. Liu X, Yan Z, Wang H. In-situ synthesis of NaY Zeolite with Coal-based Kaolin. J Nat Gas Chem. 2003;12:63–70.

    CAS  Google Scholar 

  11. Varga G. The structure of kaolinite and metakaolinite. Epitoanyag. 2007;59:6–9.

    Article  Google Scholar 

  12. Subhapriya S, Gomathipriya P. Synthesis and characterization of zeolite X from coal fly ash: a study on anticancer activity. Mater Res Express. 2018;5(8):1–11. https://doi.org/10.1088/2053-1591/aad16c.

    Article  CAS  Google Scholar 

  13. Abdullah MMAB, Ming LY, Yong HC, Tahir MFM. Clay-Based Materials in Geopolymer Technology 2018. 240–264. https://doi.org/10.5772/intechopen.74438

  14. Takeda H, Hashimoto S, Yokoyama H, Honda S, Iwamoto Y. Characterization of zeolite in zeolite-geopolymer hybrid bulk materials derived from kaolinitic clays. Materials. 2013;6:1767–78. https://doi.org/10.3390/ma6051767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Davidovits J. Geopolymers and geopolymeric new materials. J Therm Anal Calorim. 1989;35(2):429–41. https://doi.org/10.1007/bf01904446.

    Article  CAS  Google Scholar 

  16. Kong DLY, Sanjayan JG, Sagoe-Crentsil K. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem Conc Res. 2007;37:1583–9. https://doi.org/10.1016/j.cemconres.2007.08.021.

    Article  CAS  Google Scholar 

  17. Xu H, van Deventer JSJ. The effect of alkali metals on the formation of geopolymeric gels from alkali-feldspars. Colloids Surf A Physicochem. 2003;216(1–3):27–44. https://doi.org/10.1016/S0927-7757(02)00499-5.

    Article  CAS  Google Scholar 

  18. Liew YM, Kamarudin H, Al Bakri AMM, Bnhussain M, Luqman M, Nizar IK, Ruzaidi CM, Heah CY. Optimization of solids-to-liquid and alkali activator ratios of calcined kaolin geopolymeric powder. Constr Build Mater. 2012;37:440–51. https://doi.org/10.1016/j.conbuildmat.2012.07.075.

    Article  Google Scholar 

  19. Cai B, Engqvist H, Bredenberg S. Evaluation of the resistance of a geopolymer based drug delivery system to tampering. Int J Pharm. 2014;465:169–74. https://doi.org/10.1016/j.ijpharm.2014.02.029.

    Article  CAS  PubMed  Google Scholar 

  20. Alkan M, Hopa C, Yilmaz Z, Guler H. The effect of alkali concentration and solid / liquid ratio on the hydrothermal synthesis of zeolite NaA from natural kaolinite. Microporous Mesoporous Mater. 2005;86:176–84. https://doi.org/10.1016/j.micromeso.2005.07.008.

    Article  CAS  Google Scholar 

  21. Aparicio P, Galan E. Mineralogical Interference on Kaolinite Crystallinity Index Measurements. Clays Clay Miner. 1999;47(1):12–27.

    Article  CAS  Google Scholar 

  22. De Silva P, Sagoe-Crenstil K, Dirivivatnanon V. Kinetics of geopolymerization: role of Al2O3 and SiO2. Cem Concr Res. 2007;37:512–8. https://doi.org/10.1016/j.cemconres.2007.01.003.

    Article  CAS  Google Scholar 

  23. Dimas D, Giannopoulou L, Panias D. Polymerization in sodium silicate solutions: a fundamental process in geopolymerization technology. J Mater Sci. 2009;44:3719–30. https://doi.org/10.1007/s10853-009-3497-5.

    Article  CAS  Google Scholar 

  24. Frost RL, Horvath E, Mako E, Kristof J. Modification of low- and high-defect kaolinite surfaces: implications for kaolinite mineral processing. J Colloid Interf Sci. 2004;270(2):337–46. https://doi.org/10.1016/j.jcis.2003.10.034.

    Article  CAS  Google Scholar 

  25. Edomwonyi-Otu LC, Aderemi BO, Ahmed AS, Coville NJ, Maaza M (2013). Influence of Thermal Treatment on Kankara Kaolinite. Optican. 1826, 2013:15(5):1–5. https://doi.org/10.4314/njt.v37i1.1

  26. Kakali G, Perraki T, Tsivilis S, Badogiannis E. Thermal treatment of kaolin: the effect of mineralogy on the pozzaolanic activity. Appl Clay Sci. 2001;20:73–80. https://doi.org/10.1016/j.mspro.2012.06.046.

    Article  CAS  Google Scholar 

  27. Khatamian M, Irani M. Preparation and characterization of nanosized ZSM-5 zeolite using kaolin and investigation of kaolin content, crystallization time and temperature changes on the size and crystallinity of products. J Iran Chem Soc. 2009;6(1):187–94. https://doi.org/10.1007/BF03246519.

    Article  CAS  Google Scholar 

  28. Flanigen EM, Jansen JC, Van Bekkum H. Introduction to Zeolite Science and Practice. Amsterdam: Elsevier; 1991.

    Google Scholar 

  29. Marfo KK, Dodoo-Arhin D, Agyei-Tuffour BA, Nyankson E, Obada DO, Damoah LNW, Annan E, Yaya A, Onwona-Agyeman B, Bediako M. The physico-mechanical influence of dehydroxylized activated local kaolin: a supplementary cementitious material for construction applications. Case Stud Constr Mater. 2020;12:1–12. https://doi.org/10.1016/j.cscm.2019.e00306.

    Article  Google Scholar 

  30. Mozgawa W, Król M, Barczyk KW, Jastrzębski W. Application of IR spectra in the studies of zeolites from D4R and D6R structural groups. Microporous Mesoporous Mater. 2012;156:181–8. https://doi.org/10.1016/j.micromeso.2012.02.040.

    Article  CAS  Google Scholar 

  31. Treacy MMJ, Higgins JB. (Eds.) (2001) Collection of Simulated XRD Powder Patterns for Zeolites. Elsevier B.V.

  32. Mgbemere HE, Lawal GI, Ekpe IC, Chaudhary AL. Synthesis of Zeolite-ausing Kaolin Samples from Darazo, Bauchi State and Ajebo, Ogun State in Nigeria. Niger J Technol. 2018;37(1):87–95.

    Article  Google Scholar 

  33. Mostafa AA, Youssef HF, Sorour MH, Tewfik SR, Shalaan HF. Utilization of Egyptian kaolin for Zeolite-A preparation and performance evaluation. 2nd International Conf. Env. Sci. Tech. IPCBEE, IACSIT Press, Singapore. 2011:6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bright Kwakye-Awuah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwakye-Awuah, B., Abavare, E.K.K., Sefa-Ntiri, B. et al. Synthesis and characterization of geopolymer-zeolites from Ghanaian Kaolin samples by variation of two synthesis parameters. J Therm Anal Calorim 146, 1991–2003 (2021). https://doi.org/10.1007/s10973-021-10710-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10710-9

Keywords

Navigation