Skip to main content
Log in

Predictions of polymer thermal degradation: relevance of selecting the proper kinetic model

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Making predictions, such as lifetime estimations, is one of the main objectives of kinetic studies. Thus, from conventional thermal analysis experiments, the behavior of polymeric materials under processing or application conditions, usually far away from those used in the laboratory experiments, could be estimated. Conventional prediction procedures usually make use of oversimplified equations based on simple approaches. One of the most common approaches is the assumption of a first, or n-order, kinetic model for the process. However, recent studies have shown, for a number of polymers, that random scission kinetic models are not only physically sound, but more reliable in terms of describing the degradation kinetics. In this paper, the consequences of selecting an erroneous kinetic model on lifetime predictions is discussed. It is demonstrated, using both simulated and experimental data, that any kinetic analysis of a chain scission driven reaction performed assuming a first-order model entails enormous deviations in predictions. This occurs despite the fact that the first-order kinetic model can fit experimental data from chain scission driven reactions with significant correlation coefficients, and even lead to a reasonably good reconstruction of the original experimental curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Prime RB, Bair HE, Vyazovkin S, Gallagher PK, Riga A. Thermogravimetric analysis (TGA). In: Menczel JD, Prime RB, editors. Thermal analysis of polymers: fundamentals and applications. Hoboken: Wiley; 2009.

    Google Scholar 

  2. Hamid SH, Amin MB. Lifetime prediction of polymers. J Appl Polym Sci. 1995;55(10):1385–94. https://doi.org/10.1002/app.1995.070551003.

    Article  CAS  Google Scholar 

  3. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19. https://doi.org/10.1016/j.tca.2011.03.034.

    Article  CAS  Google Scholar 

  4. Perez-Maqueda LA, Sanchez-Jimenez PE, Perejon A, Garcia-Garrido C, Criado JM, Benitez-Guerrero M. Scission kinetic model for the prediction of polymer pyrolysis curves from chain structure. Polym Testing. 2014;37:1–5. https://doi.org/10.1016/j.polymertesting.2014.04.004.

    Article  CAS  Google Scholar 

  5. Carrasco F, Cailloux J, Sanchez-Jimenez PE, Maspoch ML. Improvement of the thermal stability of branched poly(lactic acid) obtained by reactive extrusion. Polym Degrad Stab. 2014;104:40–9. https://doi.org/10.1016/j.polymdegradstab.2014.03.026.

    Article  CAS  Google Scholar 

  6. Setnescu R, Badicu LV, Dumitran LM, Notingher PV, Setnescu T. Thermal lifetime of cellulose insulation material evaluated by an activation energy based method. Cellulose. 2014;21(1):823–33. https://doi.org/10.1007/s10570-013-0087-0.

    Article  CAS  Google Scholar 

  7. Bystritskaya EV, Monakhova TV, Ivanov VB. TGA application for optimising the accelerated aging conditions and predictions of thermal aging of rubber. Polym Testing. 2013;32(2):197–201. https://doi.org/10.1016/j.polymertesting.2012.10.013.

    Article  CAS  Google Scholar 

  8. Gupta YN, Chakraborty A, Pandey GD, Setua DK. Thermal and thermooxidative degradation of engineering thermoplastics and life estimation. J Appl Polym Sci. 2004;92(3):1737–48. https://doi.org/10.1002/app.20134.

    Article  CAS  Google Scholar 

  9. Jankovic B. Kinetic modeling of native cassava starch thermo-oxidative degradation using weibull and weibull-derived models. Biopolymers. 2014;101(1):41–57. https://doi.org/10.1002/bip.22271.

    Article  CAS  PubMed  Google Scholar 

  10. Yan QL, Zeman S, Elbeih A. Recent advances in thermal analysis and stability evaluation of insensitive plastic bonded explosives (PBXs). Thermochim Acta. 2012;537:1–12. https://doi.org/10.1016/j.tca.2012.03.009.

    Article  CAS  Google Scholar 

  11. Yan Q-L, Zeman S, Sanchez Jimenez PE, Zhao F-Q, Perez-Maqueda LA, Malek J. The effect of polymer matrices on the thermal hazard properties of RDX-based PBXs by using model-free and combined kinetic analysis. J Hazard Mater. 2014;271:185–95. https://doi.org/10.1016/j.jhazmat.2014.02:019.

    Article  CAS  PubMed  Google Scholar 

  12. Juhasz M, Kitahara Y, Takahashi S, Fujii T. Thermal stability of vitamin C: thermogravimetric analysis and use of total ion monitoring chromatograms. J Pharm Biomed Anal. 2012;59:190–3. https://doi.org/10.1016/j.jpba.2011.10.011.

    Article  CAS  PubMed  Google Scholar 

  13. Juhasz M, Takahashi S, Kitahara Y, Fujii T. Thermal decomposition of pyridoxine: an evolved gas analysis-ion attachment mass spectrometry study. Rapid Commun Mass Spectrom. 2012;26(7):759–64. https://doi.org/10.1002/rcm.6161.

    Article  CAS  PubMed  Google Scholar 

  14. Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM. Comments on “Thermal decomposition of pyridoxine: an evolved gas analysis-ion attachment mass spectrometry study”. About the application of model-fitting methods of kinetic analysis to single non-isothermal curves. Rapid Commun Mass Spectrom. 2013;27(3):500–2. https://doi.org/10.1002/rcm.6472.

    Article  CAS  PubMed  Google Scholar 

  15. Deroine M, Le Duigou A, Corre Y-M, Le Gac P-Y, Davies P, Cesar G, et al. Accelerated ageing and lifetime prediction of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in distilled water. Polym Testing. 2014;39:70–8. https://doi.org/10.1016/j.polymertesting.2014.07.018.

    Article  CAS  Google Scholar 

  16. Martín MI, Rodríguez-Lence F, Güemes A, Fernández-López A, Pérez-Maqueda LA, Perejón A. On the determination of thermal degradation effects and detection techniques for thermoplastic composites obtained by automatic lamination. Compos Part A Appl Sci Manuf. 2018;111:23–32. https://doi.org/10.1016/j.compositesa.2018.05.006.

    Article  CAS  Google Scholar 

  17. Chamas A, Moon H, Zheng J, Qiu Y, Tabassum T, Jang JH, et al. Degradation rates of plastics in the environment. ACS Sustain Chem Eng. 2020;8(9):3494–511. https://doi.org/10.1021/acssuschemeng.9b06635.

    Article  CAS  Google Scholar 

  18. Vyazovkin S, Burnham AK, Favergeon L, Koga N, Moukhina E, Pérez-Maqueda LA, et al. ICTAC kinetics committee recommendations for analysis of multi-step kinetics. Thermochim Acta. 2020. https://doi.org/10.1016/j.tca.2020.178597.

    Article  Google Scholar 

  19. Flynn JH. A critique of lifetime prediction of polymers by thermal-analysis. J Therm Anal. 1995;44(2):499–512. https://doi.org/10.1007/bf02636139.

    Article  CAS  Google Scholar 

  20. Budrugeac P, Cucos A, Dascălu R, Paraschiv C, Mitrea S, Sbarcea BG. The use of thermal analysis methods for predicting the thermal endurance of an epoxy resin used as electrical insulator. J Therm Anal Calor. 2020. https://doi.org/10.1007/s10973-020-10156-5.

    Article  Google Scholar 

  21. Vimalathithan PK, Barile C, Vijayakumar CT. Investigation of kinetic triplets for thermal degradation of thermally cured vinyl ester resin systems and lifetime predictions. J Therm Anal Calor. 2018;133(2):881–91. https://doi.org/10.1007/s10973-018-7154-6.

    Article  CAS  Google Scholar 

  22. Mothé CG, de Freitas JS. Lifetime prediction and kinetic parameters of thermal decomposition of cashew gum by thermal analysis. J Therm Anal Calor. 2018;131(1):397–404. https://doi.org/10.1007/s10973-017-6844-9.

    Article  CAS  Google Scholar 

  23. Blanco I. Lifetime prediction of food and beverage packaging wastes. J Therm Anal Calor. 2016;125(2):809–16. https://doi.org/10.1007/s10973-015-5169-9.

    Article  CAS  Google Scholar 

  24. Liao SW, Hsieh CC, Li KY, Tsai SY, Tseng JM, Li JS, et al. Storage lifetime management and thermal hazard assessment of thermally reactive material. J Therm Anal Calor. 2014;116(1):205–14. https://doi.org/10.1007/s10973-013-3501-9.

    Article  CAS  Google Scholar 

  25. Melniciuc-Puica N, Lisa G, Rusu I. On the lifetime prediction of old documents. J Therm Anal Calor. 2010;99(3):835–42. https://doi.org/10.1007/s10973-009-0429-1.

    Article  CAS  Google Scholar 

  26. Šimon P. Material stability predictions applying a new non-Arrhenian temperature function. J Therm Anal Calor. 2009;97(2):391–6. https://doi.org/10.1007/s10973-008-9627-5.

    Article  CAS  Google Scholar 

  27. Käser F, Roduit B. Prediction of the ageing of rubber using the chemiluminescence approach and isoconversional kinetics. J Therm Anal Calor. 2008;93(1):231–7. https://doi.org/10.1007/s10973-007-8985-8.

    Article  CAS  Google Scholar 

  28. Burnham AK, Dinh LN. A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions. J Therm Anal Calor. 2007;89(2):479–90. https://doi.org/10.1007/s10973-006-8486-1.

    Article  CAS  Google Scholar 

  29. Roduit B, Xia L, Folly P, Berger B, Mathieu J, Sarbach A, et al. The simulation of the thermal behavior of energetic materials based on DSC and HFC signals. J Therm Anal Calor. 2008;93(1):143–52. https://doi.org/10.1007/s10973-007-8864-3.

    Article  CAS  Google Scholar 

  30. Tarrío-Saavedra J, López-Beceiro J, Álvarez A, Naya S, Quintana-Pita S, García-Pardo S, et al. Lifetime estimation applying a kinetic model based on the generalized logistic function to biopolymers. J Therm Anal Calor. 2015;122(3):1203–12. https://doi.org/10.1007/s10973-015-5083-1.

    Article  CAS  Google Scholar 

  31. Brown ME. Introduction to thermal analysis. 2nd ed. Dodrecht: Kluwer; 2001.

    Google Scholar 

  32. Krevelen DWV, Nijenhuis JT. Properties of polymers. 4th ed. Amsterdam: Elsevier; 2009.

    Google Scholar 

  33. Yoshikawa M, Goshi Y, Yamada S, Koga N. Multistep kinetic behavior in the thermal degradation of poly(l-lactic acid): a physico-geometrical kinetic interpretation. J Phys Chem B. 2014;118(38):11397–405. https://doi.org/10.1021/jp507247x.

    Article  CAS  PubMed  Google Scholar 

  34. García-Garrido C, Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM. Combined TGA-MS kinetic analysis of multistep processes. Thermal decomposition and ceramification of polysilazane and polysiloxane preceramic polymers. Phys Chem Chem Phys. 2016;18(42):29348–60. https://doi.org/10.1039/c6cp03677e.

    Article  PubMed  Google Scholar 

  35. Perejón A, Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B. 2011;115(8):1780–91. https://doi.org/10.1021/jp110895z.

    Article  CAS  PubMed  Google Scholar 

  36. Sánchez-Jiménez PE, Perejón A, Criado JM, Diánez MJ, Pérez-Maqueda LA. Kinetic model for thermal dehydrochlorination of poly(vinyl chloride). Polymer. 2010;51(17):3998–4007. https://doi.org/10.1016/j.polymer.2010.06.020.

    Article  CAS  Google Scholar 

  37. Budrugeac P. Applicability of non-isothermal model-free predictions for assessment of conversion vs. time curves for complex processes in isothermal and quasi-isothermal conditions. Thermochim Acta. 2013;558:67–73. https://doi.org/10.1016/j.tca.2013.02.001.

    Article  CAS  Google Scholar 

  38. Burnham AK. Use and misuse of logistic equations for modeling chemical kinetics. J Therm Anal Calor. 2017;127(1):1107–16. https://doi.org/10.1007/s10973-015-4879-3.

    Article  CAS  Google Scholar 

  39. Sreeram A, Patel NG, Venkatanarayanan RI, DeLuca SJ, Yuya PA, Krishnan S. Thermogravimetric study of the kinetics of formation of poly(para-phenylene vinylene) by thermal conversion of a sulfonium precursor. Polym Testing. 2014;37:170–8. https://doi.org/10.1016/j.polymertesting.2014.05.011.

    Article  CAS  Google Scholar 

  40. Correia DM, Padrao J, Rodrigues LR, Dourado F, Lanceros-Mendez S, Sencadas V. Thermal and hydrolytic degradation of electrospun fish gelatin membranes. Polym Testing. 2013;32(5):995–1000. https://doi.org/10.1016/j.polymertesting.2013.05.004.

    Article  CAS  Google Scholar 

  41. Huang YF, Chiueh PT, Kuan WH, Lo SL. Pyrolysis kinetics of biomass from product information. Appl Energy. 2013;110:1–8. https://doi.org/10.1016/j.apenergy.2013.04.034.

    Article  CAS  Google Scholar 

  42. ASTM_E1641–07. Annual Book of ASTM Standards Vol. 14.02. Standard test method for decomposition kinetics by thermogravimetry. West Conshohocken, PA: ASTM; 2007.

  43. ASTM_E698–05. Annual Book of ASTM Standards, vol. 14.02. Standard test method for arrhenius kinetic constants for thermally unstable materials. West Conshohocken, PA ASTM International; 2005. p. 22.

  44. Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Pascual-Cosp J, Benitez-Guerrero M, Criado JM. An improved model for the kinetic description of the thermal degradation of cellulose. Cellulose. 2011;18(6):1487–98. https://doi.org/10.1007/s10570-011-9602-3.

    Article  CAS  Google Scholar 

  45. Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM. Constant rate thermal analysis fot thermal stability studies of polymers Polymer Degradation and Stability. 2011;96(5).

  46. Sanchez-Jimenez PE, Perez Maqueda LA, Perejón A, Criado JM. Nanoclay nucleation effect in the thermal stabilization of a polymer nanocomposite: a kinetic mechanism change. J Phys Chem C. 2012;116(21):11797–807.

    Article  CAS  Google Scholar 

  47. Perejon A, Sanchez-Jimenez PE, Gil-Gonzalez E, Perez-Maqueda LA, Criado JM. Pyrolysis kinetics of ethylene-propylene (EPM) and ethylene-propylene-diene (EPDM). Polym Degrad Stab. 2013;98(9):1571–7. https://doi.org/10.1016/j.polymdegradstab.2013.06.029.

    Article  CAS  Google Scholar 

  48. Carrasco F, Perez-Maqueda LA, Sanchez-Jimenez PE, Perejon A, Santana OO, Maspoch ML. Enhanced general analytical equation for the kinetics of the thermal degradation of poly(lactic acid) driven by random scission. Polym Testing. 2013;32(5):937–45. https://doi.org/10.1016/j.polymertesting.2013.04.013.

    Article  CAS  Google Scholar 

  49. Souza VS, Bianchi O, Lima MFS, Mauler RS. Morphological, thermomechanical and thermal behavior of epoxy/MMT nanocomposites. J Non-Cryst Solids. 2014;400:58–66. https://doi.org/10.1016/j.jnoncrysol.2014.05.003.

    Article  CAS  Google Scholar 

  50. Simha R, Wall LA. Kinetics of chain depolymerization Journal of Physical Chemistry. 1952;56(6):707–15.

    CAS  Google Scholar 

  51. Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM. A new model for the kinetic analysis of thermal degradation of polymers driven by random scission. Polym Degrad Stab. 2010;95(5):733–9. https://doi.org/10.1016/j.polymdegradstab.2010.02.017.

    Article  CAS  Google Scholar 

  52. Mamleev V, Bourbigot S, Yvon J. Kinetic analysis of the thermal decomposition of cellulose: the main step of mass loss. J Anal Appl Pyrol. 2007;80(1):151–65.

    Article  CAS  Google Scholar 

  53. Snegirev AY, Talalov VA, Stepanov VV, Harris JN. Formal kinetics of polystyrene pyrolysis in non-oxidizing atmosphere. Thermochim Acta. 2012;548:17–26. https://doi.org/10.1016/j.tca.2012.08.021.

    Article  CAS  Google Scholar 

  54. Chen K, Harris K, Vyazovkin S. Tacticity as a factor contributing to the thermal stability of polystyrene. Macromol Chem Phys. 2007;208(23):2525–32. https://doi.org/10.1002/macp.200700426.

    Article  CAS  Google Scholar 

  55. Gamlin C. Mechanism and kinetics of the isothermal thermodegradation of ethylene-propylene-diene (EPDM) elastomers. Polym Degrad Stab. 2003;80(3):525–31. https://doi.org/10.1016/s0141-3910(03)00036-3.

    Article  CAS  Google Scholar 

  56. Blanco I. Lifetime prediction of polymers: To bet, or not to bet-is this the question? Mater. 2018;11(8). doi:https://doi.org/10.3390/ma11081383.

  57. Blanco I, Abate L, Antonelli ML. The regression of isothermal thermogravimetric data to evaluate degradation Ea values of polymers: a comparison with literature methods and an evaluation of lifetime prediction reliability. Polym Degrad Stab. 2011;96(11):1947–54. https://doi.org/10.1016/j.polymdegradstab.2011.08.005.

    Article  CAS  Google Scholar 

  58. Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM. Limitations of model-fitting methods for kinetic analysis: polystyrene thermal degradation. Resour Conserv Recycl. 2013;74:75–81. https://doi.org/10.1016/j.resconrec.2013.02.014.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from projects US-1262507 and P18-FR-1087 from Junta de Andalucía and FEDER funds and CTQ2017-83602-C2 from the Spanish Ministerio de Economía y Competitividad and FEDER funds is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pedro E. Sánchez-Jiménez or Luis A. Pérez-Maqueda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Jiménez, P.E., Perejón, A., Arcenegui-Troya, J. et al. Predictions of polymer thermal degradation: relevance of selecting the proper kinetic model. J Therm Anal Calorim 147, 2335–2341 (2022). https://doi.org/10.1007/s10973-021-10649-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10649-x

Keywords

Navigation