Skip to main content
Log in

Performance, emission and combustion characteristics of various biodiesel blends

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This experimentation explores the usage of three types of biodiesel consisting of palm, jatropha and cottonseed incorporated in a single-cylinder four-stroke CI engine to evaluate the performance, emission and combustion indices. The objective of this study is to prepare biodiesel blends of three types: (i) primary, (ii) binary and (iii) ternary, and investigate their behaviors to identify the optimal blends that produce the lowest emissions and adequate performance with no significant engine modifications. Experimental investigations carried out in this study indicate that by increasing biodiesel quantity in the blend, a rise in brake thermal efficiency and a marginal increase in brake specific fuel consumption were deduced. P30 blend was superior among the biodiesel blends, showing a maximum thermal efficiency of 36.83%. Biodiesel blends were reported to emit lower NOx emissions at higher loads and increased NOx at low loads compared to diesel. Culminated values of NOx were shown by CS30 (601 ppm); similarly, binary blend PJ30 showed a curtailed amount of NOx (497 ppm) at 20 N-m loading. Lower emissions of unburnt hydrocarbon and carbon monoxide are noticed for biodiesel blends with values lying in a range of 35–40 ppm and 0.04%, respectively, while the smoke emissions escalated for biodiesel blends reaching up to 76% for PJCS20. Among combustion indices, biodiesels showed lower heat release rate (HRR) and lower maximum pressure than diesel and increasing blend ratio resulted in lower HRR and higher pressure. P10 blend was observed to be providing better performance and emissions (lowered HC and CO) compared to all other blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig.32
Fig.33

Similar content being viewed by others

Abbreviations

BTE:

Brake thermal efficiency

BSFC:

Brake specific fuel consumption

BMEP:

Brake mean effective pressure

BTDC:

Before top dead center

EGR:

Exhaust gas re-circulation

DTBP:

Di-tert-butyl peroxide

DI:

Direct injection

HCCI:

Homogeneous charge compression ignition

BHT:

Butylated hydroxytoluene

Pmax:

Peak pressure

SOC:

Start of combustion

MHRR:

Maximum heat release rate

D:

Diesel 100%

P10:

Palm 10% + diesel 90%

P20:

Palm 20% + diesel 80%

P30:

Palm 30% + diesel 70%

J10:

Jatropha 10% + diesel 90%

J20:

Jatropha 20% + diesel 80%

J30:

Jatropha 30% + diesel 70%

CS10:

Cottonseed 10% + diesel 90%

CS20:

Cottonseed 20% + diesel 80%

CS30:

Cottonseed 30% + diesel 70%

PJ10:

Palm 5% + jatropha 5% + diesel 90%

PJ20:

Palm 10% + jatropha 10% + diesel 80%

PJ30:

Palm 15% + jatropha 15% + diesel 70%

JCS10:

Jatropha 5% + cottonseed 5% + diesel 90%

JCS20:

Jatropha 10% + cottonseed 10% + diesel 80%

JCS30:

Jatropha 15% + cottonseed 15% + diesel 70%

PCS10:

Palm 5% + cottonseed 5% + diesel 90%

PCS20:

Palm 10% + cottonseed 10% + diesel 80%

PCS30:

Palm 15% + cottonseed 15% + diesel 70%

PJCS10:

Palm 3.33% + jatropha 3.33% + cottonseed 3.33% + diesel 90%

PJCS20:

Palm 6.66% + jatropha 6.66% + cottonseed 6.66% + diesel 80%

PJCS30:

Palm 10% + jatropha 10% + cottonseed 10% + diesel 70

References

  1. SenthurPrabu S, Asokan MA, Prathiba S, Ahmed S, Puthean G. Effect of additives on performance, combustion and emission behavior of preheated palm oil/diesel blends in DI diesel engine. Renew Energy. 2018;122:196–205. https://doi.org/10.1016/j.renene.2018.01.068.

    Article  CAS  Google Scholar 

  2. Shelke PS, Sakhare NM, Lahane S. Investigation of combustion characteristics of a cottonseed biodiesel fuelled diesel engine. Procedia Technol. 2016;25:1049–55. https://doi.org/10.1016/j.protcy.2016.08.205.

    Article  Google Scholar 

  3. Monirul IM, Masjuki HH, Kalam MA, Mosarof MH, Zulkifli NWM, Teoh YH, et al. Assessment of performance, emission and combustion characteristics of palm, jatropha and Calophyllum inophyllum biodiesel blends. Fuel. 2016;181:985–95. https://doi.org/10.1016/j.fuel.2016.05.010.

    Article  CAS  Google Scholar 

  4. Bari S, Hossain SN. Performance and emission analysis of a diesel engine running on palm oil diesel (POD). Energy Procedia. 2019;160:92–9. https://doi.org/10.1016/j.egypro.2019.02.123.

    Article  CAS  Google Scholar 

  5. Ramesh Kumar C, Saravanan S, Gopal P. Investigation of combustion, performance and emission characters of compression ignition engine fuelled with diesel blends of linseed and cottonseed oil. ProgIndEcol. 2017;11:207–18.

    Google Scholar 

  6. Uttamrao KN. Production of Biodiesel From Refined Cotton Seed. 2018;8:817–24.

    Google Scholar 

  7. Rosha P, Dhir A, Mohapatra SK. Influence of gaseous fuel induction on the various engine characteristics of a dual fuel compression ignition engine: a review. Renew Sustain Energy Rev. 2017;82:3333–49. https://doi.org/10.1016/j.rser.2017.10.055.

    Article  CAS  Google Scholar 

  8. Bedar P, Kumar GN. Performance emission and combustion characteristics of CRDI engine operating on Jatropha curcas blend with EGR. Mater Today Proc. 2018;5:23384–90. https://doi.org/10.1016/j.matpr.2018.11.078.

    Article  CAS  Google Scholar 

  9. Kumar MS, Prabhahar M, Sendilvelan S, Singh S, Venkatesh R, Bhaskar K. Combustion, performance and emission analysis of a diesel engine fueled with methyl esters of Jatropha and fish oil with exhaust gas recirculation. Energy Procedia. 2019;160:404–11. https://doi.org/10.1016/j.egypro.2019.02.174.

    Article  CAS  Google Scholar 

  10. Venkatesan H, Godwin John J, Seralathan S, Micha PT. Assessment of combustion, performance, and emission phenomenon of a CI engine fuelled with algal and cottonseed biodiesel. SAE Tech Pap. 2018;2018:1–11.

    Google Scholar 

  11. Silitonga AS, Hassan MH, Ong HC, Kusumo F. Analysis of the performance, emission and combustion characteristics of a turbocharged diesel engine fuelled with Jatropha curcas biodiesel-diesel blends using kernel-based extreme learning machine. Environ SciPollut Res. 2017;24:25383–405.

    Article  CAS  Google Scholar 

  12. Subbarayan MR, SenthilKumaar JS, AnanthaPadmanaban MR. Experimental investigation of evaporation rate and exhaust emissions of diesel engine fuelled with cotton seed methyl ester and its blend with petro-diesel. Transp Res Part D Transp Environ. 2016;48:369–77. https://doi.org/10.1016/j.trd.2016.08.024.

    Article  Google Scholar 

  13. Patil AR, Desai AD, Madavi AD, Kamble SA, Navale SB, Dhutmal VU. Comparative study on Effect of Biodiesel on CI Engine Performance and Emission Characteristics. Mater Today Proc. 2018;5:3556–62. https://doi.org/10.1016/j.matpr.2017.11.604.

    Article  CAS  Google Scholar 

  14. Kumar AN, Kishore PS, Raju KB, Kasianantham N, Bragadeshwaran A. Engine parameter optimization of palm oil biodiesel as alternate fuel in CI engine. Environ SciPollut Res. 2019;26:6652–76.

    Article  CAS  Google Scholar 

  15. Sundar K, Udayakumar R. Performance and emissions characteristics of a variable compression ratio engine operated on dual fuel mode using diesel and biodiesel with additives. J Phys Conf Ser. 2019;1276.

  16. Musthafa MM, Kumar TA, Mohanraj T, Chandramouli R. A comparative study on performance, combustion and emission characteristics of diesel engine fuelled by biodiesel blends with and without an additive. Fuel. 2018;225:343–8. https://doi.org/10.1016/j.fuel.2018.03.147.

    Article  CAS  Google Scholar 

  17. Madiwale S, Karthikeyan A, Bhojwani V. Properties investigation and performance analysis of a diesel engine fuelled with Jatropha, Soybean, Palm and Cottonseed biodiesel using Ethanol as an additive. Mater Today Proc. 2018;5:657–64. https://doi.org/10.1016/j.matpr.2017.11.130.

    Article  CAS  Google Scholar 

  18. Ismail TM, Lu D, Ramzy K, Abd El-Salam M, Yu G, Elkady MA. Experimental and theoretical investigation on the performance of a biodiesel-powered engine from plant seeds in Egypt. Energy. 2019;189:116197. https://doi.org/10.1016/j.energy.2019.116197.

    Article  CAS  Google Scholar 

  19. Arockiasamy P, Ramachandran BA. Influence of Antioxidant Addition in Jatropha Biodiesel on the Performance, Combustion and Emission Characteristics of a DI Diesel Engine. J InstEngSer C. 2018;99:207–16.

    Google Scholar 

  20. Kim HY, Ge JC, Choi NJ. Application of palm oil biodiesel blends under idle operating conditions in a common-rail direct-injection diesel engine. Appl Sci. 2018;8.

  21. Tobib HM, Rostam H, Mossa MAA, Aziz Hairuddin A, Noor MM. The performance of an HCCI-DI engine fuelled with palm oil-based biodiesel. IOP Conf Ser Mater Sci Eng. 2019;469.

  22. Adam IK, Abdul Aziz AR, Heikal MR, Yusup S, Firmansyah, Ahmad AS, et al. Performance and emission analysis of rubber seed, palm, and their combined blend in a multi-cylinder diesel engine. Energies. 2018;11:1–20.

  23. Santhosh M, Padmanaban KP. Experimental investigation on engine performances, combustion characteristics and emission of exhaust gases of VCR engine fuelled with cottonseed oil methyl ester blended with diesel. Int J Green Energy. 2016;13:1534–45.

    Article  CAS  Google Scholar 

  24. Senthilraja R, Sivakumar V, Thirugnanasambandham K, Nedunchezhian N. Performance, emission and combustion characteristics of a dual fuel engine with Diesel-Ethanol—Cotton seed oil Methyl ester blends and Compressed Natural Gas (CNG) as fuel. Energy. 2016;112:899–907. https://doi.org/10.1016/j.energy.2016.06.114.

    Article  CAS  Google Scholar 

  25. Balasubramanian K, Purushothaman K. Effect of acetylene addition on performance, emission and combustion characteristics of neem biodiesel and corn biodiesel-fueled CI engine. J Therm Anal Calorim. 2019;138:1405–14.

    Article  CAS  Google Scholar 

  26. Yesilyurt MK, Yilbasi Z, Aydin M. The performance, emissions, and combustion characteristics of an unmodified diesel engine running on the ternary blends of pentanol/safflower oil biodiesel/diesel fuel. J Therm Anal Calorim. 2020;1–40.

  27. Rajendran S. A comparative study of performance and emission characteristics of neat biodiesel operated diesel engine: a review. J. Therm. Anal. Calorim. 2020. 1–11.

  28. Sharma V, Duraisamy G, Arumugum K. Impact of bio-mix fuel on performance, emission and combustion characteristics in a single cylinder DICI VCR engine. Renew Energy. 2020;146:111–24. https://doi.org/10.1016/j.renene.2019.06.142.

    Article  CAS  Google Scholar 

  29. Dhamodaran G, Krishnan R, Pochareddy YK, Pyarelal HM, Sivasubramanian H, Ganeshram AK. A comparative study of combustion, emission, and performance characteristics of rice-bran-, neem-, and cottonseed-oil biodiesels with varying degree of unsaturation. Fuel. 2017;187:296–305. https://doi.org/10.1016/j.fuel.2016.09.062.

    Article  CAS  Google Scholar 

  30. Rosha P, Mohapatra SK, Mahla SK, Cho HM, Chauhan BS, Dhir A. Effect of compression ratio on combustion, performance, and emission characteristics of compression ignition engine fueled with palm (B20)biodiesel blend. Energy. 2019;178:676–84.

    Article  CAS  Google Scholar 

  31. Hirner FS, Hwang J, Bae C, Patel C, Gupta T, Agarwal AK. Performance and emission evaluation of a small-bore biodiesel compression-ignition engine. Energy. 2019;183:971–82. https://doi.org/10.1016/j.energy.2019.07.015.

    Article  CAS  Google Scholar 

  32. Sundar K, Udayakumar R, Periasamy C, Khurana S. Cotton Seed Oil and Rice Bran Oil as a Source of Biodiesel in India. J Phys Conf Ser. 2019;1276.

  33. Giakoumis EG, Sarakatsanis CK. Estimation of biodiesel cetane number, density, kinematic viscosity and heating values from its fatty acid weight composition. Fuel. 2018;222:574–85. https://doi.org/10.1016/j.fuel.2018.02.187.

    Article  CAS  Google Scholar 

  34. Ramírez-Verduzco LF, Rodríguez-Rodríguez JE, Jaramillo-Jacob ADR. Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel. 2012;91:102–11.

    Article  Google Scholar 

  35. Knothe G, Steidley KR. Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel. 2005;84:1059–65.

    Article  CAS  Google Scholar 

  36. Oliveira LE, Da Silva MLCP. Comparative study of calorific value of rapeseed, soybean, jatropha curcas and crambe biodiesel. Renew Energy Power Qual J. 2013;1:679–82.

    Article  Google Scholar 

  37. Moffat RJ. Describing the uncertainties in experimental results. ExpTherm Fluid Sci. 1988;1:3–17.

    Article  Google Scholar 

  38. Ge JC, Kim HY, Yoon SK, Choi NJ. Optimization of palm oil biodiesel blends and engine operating parameters to improve performance and PM morphology in a common rail direct injection diesel engine. Fuel. 2020;260:116326. https://doi.org/10.1016/j.fuel.2019.116326.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Feroskhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, A., Panchal, S.H., Surana, A. et al. Performance, emission and combustion characteristics of various biodiesel blends. J Therm Anal Calorim 147, 2455–2479 (2022). https://doi.org/10.1007/s10973-021-10642-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10642-4

Keywords

Navigation