Skip to main content
Log in

Analysis of thermal hazards of tert-butylperoxy-2-ethylhexyl carbonate by calorimetric technique

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Tert-butylperoxy-2-ethylhexyl carbonate (TBEC) is a colorless clear liquid with the molecular formula of C13H26O4, and it is often used as an initiator in polystyrene production. However, it has a high degree of thermal sensitivity. In order to study the thermal hazard of TBEC, the theoretical and experimental methods were combined to yield results. In the theoretical section, the bond energies of TBEC were calculated by Gaussian16 software to analyze the instability of TBEC from the microscopic point of view. In the experimental section, the combustion test, Easy Max and Phi-tec II were utilized to study the thermal characteristic of TBEC. The adiabatic kinetic parameters were calculated; then time to maximum rate under adiabatic conditions (TMRad) and self-accelerated decomposition temperature (SADT) were also estimated. The results demonstrate that TBEC can evaporate to produce combustible gas during heating, and will burn violently when encountering an ignition source. According to the calculation results, the activation energy (Ea) of TBEC under adiabatic conditions is 156.16 kJ mol−1. And based on the value of SADT, the ambient temperature during storage and transportation of TBEC should be lower than 51.83 °C. The results can help designers decide whether it is necessary to take extra measures to reduce risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

TMRad :

Time to maximum rate under adiabatic conditions (h)

SADT:

Self-accelerating decomposition temperature (°C)

E a :

The activation energy (J mol–1)

A :

The pre-exponential factor (s−1)

(dT/dt)max :

Maximum temperature rise rate (°C min−1)

(dP/dt)max :

Maximum pressure rise rate (bar min−1)

φ :

Thermal inertia factor

m :

Mass (g)

C p :

The specific heat capacity (J g−1 K–1)

T 0 :

Exothermic onset temperature (K)

T f :

Exothermic end temperature (K)

ΔT ad :

Adiabatic temperature rise (K)

T 0 ,f :

Modified exothermic onset temperature (K)

T f ,f :

Modified exothermic end temperature (K)

ΔT ad ,f :

Modified adiabatic temperature rise (K)

k :

The rate constant

n :

Reaction order

R :

Universal gas constant (8.314 J mol−1 K−1)

τ :

Time to reach the maximum reaction rate(min)

U :

Surface heat transfer coefficient (J m–2 K–1)

S :

Surface area of packaging (m2)

T NR :

The critical non-return temperature (°C

c :

The reaction vessel

s :

The reactant

References

  1. Hou HY, Su CH, Shu CM. Thermal risk analysis of cumene hydroperoxide in the presence of alkaline catalysts. J Loss Prev Process Ind. 2012;25:176–80.

    Article  CAS  Google Scholar 

  2. Liu SH, Shu CM, Hou HY. Applications of thermal hazard analyses on process safety assessments. J Loss Prev Process Ind. 2015;33:59–69.

    Article  CAS  Google Scholar 

  3. Cheng YF, Liu SH, Shu CM, Zhang B, Li YF. Energy estimation and modeling solid thermal explosion containment on reactor for three organic peroxides by calorimetric technique. J Therm Anal Calorim. 2017;130:1201–11.

    Article  CAS  Google Scholar 

  4. Chen WC, Shu CM. Prediction of thermal hazard for TBPTMH mixed with BPO through DSC and isoconversional kinetics analysis. J Therm Anal Calorim. 2016;126:1937–45.

    Article  CAS  Google Scholar 

  5. Somma ID, Andreozzi R, Canterino M, Caprio V, Sanchirico R. Thermal decomposition of cumene hydroperoxide: Chemical and kinetic characterization. AIChE J. 2008;54:1579–84.

    Article  Google Scholar 

  6. Li XR, Koseki H. Thermal decomposition kinetic of liquid organic peroxides. J Loss Prev Process Ind. 2005;18:460–4.

    Article  Google Scholar 

  7. Duh YS, Kao CS, Hwang HH, Lee WWL. Thermal decomposition kinetics of cumene cydroperoxide. Process Saf Environ Prot. 1998;76:271–6.

    Article  CAS  Google Scholar 

  8. Wang SY, Peng X, Li HB, Guo ZC, Chen LP, Chen WH. Numerical simulation and experimental study of thermal decomposition of cumene hydroperoxide in closed pressure vessel. Thermochim Acta. 2018;669:116–25.

    Article  CAS  Google Scholar 

  9. Liu SH, Hou HY, Chen JW, Weng SY, Lin YC, Shu CM. Effects of thermal runaway hazard for three organic peroxides conducted by acids and alkalines with DSC, VSP2, and TAM III. Thermochim Acta. 2013;566:226–32.

    Article  CAS  Google Scholar 

  10. Liu SH, Yu CF, Das M. Thermal hazardous evaluation of autocatalytic reaction of cumene hydroperoxide alone and mixed with products under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2019.

  11. Chen KY, Wu SH, Wang YW, Shu CM. Runaway reaction and thermal hazards simulation of cumene hydroperoxide by DSC. J Loss Prev Process Ind. 2008;21:101–9.

    Article  CAS  Google Scholar 

  12. Shen Y, Zhu W, Papadaki M, Mannan MS, Mashuga CV, Cheng Z. Thermal decomposition of solid benzoyl peroxide using advanced reactive system screening tool: effect of concentration, confinement and selected acids and bases. J Loss Prev Process Ind. 2019;60:28–34.

    Article  CAS  Google Scholar 

  13. Severini F, Gallo R. Different scanning calorimetry study of thermal decomposition of benzoyl peroxide and 2,2'-azobisisobutyronitrile mixtures. J Therm Anal Calorim. 1984; 29, 561–566.

  14. Hordijk AC, De Groot JJ. Experimental data on the thermal kinetics of organic peroxides. Thermochim Acta. 1986;101:45–63.

    Article  CAS  Google Scholar 

  15. Ferrer N, Serra E, Nomen R, Sempere J. Thermal decomposition of tricyclohexylidene triperoxide. J Therm Anal Calorim. 2018;134:1293–8.

    Article  CAS  Google Scholar 

  16. Zang N, Qian XM, Liu ZY, Shu CM. Thermal hazard evaluation of cyclohexanone peroxide synthesis. J Therm Anal Calorim. 2016;124(2):1131–9.

    Article  CAS  Google Scholar 

  17. Das M, Shu CM. A green approach towards adoption of chemical reaction modelon2,5-dimethyl-2,5-di-(tert-butylperoxy) hexane decomposition by differential isoconversional kinetic analysis. J Hazard Mater. 2016;301:222–32.

    Article  CAS  Google Scholar 

  18. Yu AD, Cao CR, Pan XH, Shu CM, Wang WJ. Solid thermal explosion of autocatalytic material based on nonisothermal experiments: multistage evaluationsfor2,2’-azobis(2-methylpropionitrile) and 1,1’-azobis (cyclohexanecarbonitrile). Process Saf Prog. 2019;38:10–9.

    Article  Google Scholar 

  19. Liu C, Ye L, Yuan W, Zhang Y, Zou J, Yang J, Wang Y, Qi F, Zhou Z. Investigation on pyrolysis mechanism of guaiacol as lignin model compound at atmospheric pressure. Fuel. 2018;232:632–8.

    Article  CAS  Google Scholar 

  20. Jiang X, Lu Q, Hu B, Liu J, Dong C, Yang Y. Intermolecular interaction mechanism of lignin pyrolysis: a joint theoretical and experimental study. Fuel. 2018;215:386–94.

    Article  CAS  Google Scholar 

  21. Hu B, Lu Q, Jiang XY, Liu J, Cui MS, Dong CQ, Yang YP. Formation mechanism of hydroxyacetone in glucose pyrolysis: a combined experimental and theoretical study. Proc Combust Inst. 2019;37:2741–8.

    Article  CAS  Google Scholar 

  22. Hu B, Lu Q, Wu YT, Xie WL, Cui MS, Liu J, Dong CQ, Yang YP. Insight into the formation mechanism of levoglucosenone in phosphoricacid-catalyzed fast pyrolysis of cellulose. J Energy Chem. 2020;43:78–89.

    Article  Google Scholar 

  23. Chen P, Gu M, Chen G, Huang X, Lin Y. The effect of metal calcium on nitrogen migration and transformation during coal pyrolysis: mass spectrometry experiments and quantum chemical calculations. Fuel. 2020; 264.

  24. Park J, Chakraborty D, Jamindar S, Xia WS, Lin MC, Bedford C. Thermal decomposition of 2,2-bis(difluoroamino) propane studied by FTIR spectrometry and quantum chemical calculations: the primary dissociation kinetics and the mechanism for decomposition of the (CH3)2CNF2 radical. Thermochim Acta. 2002;384:101–11.

    Article  CAS  Google Scholar 

  25. Hua M, Wei CY, Guo XX, Liang XM, Pan XH, Yu AD, Jiang JJ, Jiang JC. Thermal hazard evaluation of tert-butylperoxy-2ethylhexanoate mixed with H2O and NaOH solution. Chem Eng Commun. 2019.

  26. Wei CY, Lin WC, Pan XH, Shu CM, Hua M, Jiang HC, Jiang JC. Thermal risk assessment of tert-butylperoxy-2-ethylhexyl carbonate for storage and transport. J Therm Anal Calorim. 2019;138:2891–900.

    Article  CAS  Google Scholar 

  27. Zhang Y, Chung YH, Liu SH, Shu CM, Jiang JC. Analysis of thermal hazards of O,O-dimethylphosphoramidothioate by DSC, TG, VSP2 and GC/MS. Thermochimica Acta. 2017; 69–76.

  28. Wang WJ, Fang JL, Pan XH, Hua M, Jiang JJ, Ni L, Jiang JC. Thermal research on the uncontrolled behavior of styrene bulk polymerization. J Loss Prev Process Ind. 2019;57:239–44.

    Article  CAS  Google Scholar 

  29. Li XR, Koseki H. Study on the early stage of runaway reaction using Dewar vessels. J Loss Prev Process Ind. 2005;18:455–9.

    Article  Google Scholar 

  30. Wu SH, Shyu ML, I YP, Chi JH, Shu CM. Evaluation of runaway reaction for dicumyl peroxide in a batch reactor by DSC and VSP2. J Loss Prevent Process Ind. 2009; 22, 721–727.

  31. Wu SH, Wu JY, Wu YT, Lee JC, Huang YH, Shu CM. Explosion evaluation and safety storage analyses of cumene hydroperoxide using various calorimeters. J Therm Anal Calorim. 2013;111:669–75.

    Article  CAS  Google Scholar 

  32. Liu XH, Zhu SB, Zhu XZ, Wu XL. Hazard Assessment of Hydrogen Peroxide with Polyphosphonic Acid by Vent Sizing Package 2. ProcedEng. 2014;84:427–35.

    Google Scholar 

  33. Fu ZM, Li XR, Koseki H, Mok YS. Evaluation on thermal hazard of methylethyl ketone peroxide by using adiabatic method. J LossPrevent Process Ind. 2003;16:389–93.

    Article  Google Scholar 

  34. Liu SH, Zhan XB, Lu YM, Xu ZL, Wu T. Thermal hazard evaluation of AIBME by micro-calorimetric technique coupled with kinetic investigation. J Therm Anal Calorim. 2020.

  35. Chi JH, Wu SH, Charpentier JC, I YP, Shu CM. Thermal hazard accident investigation of hydrogen peroxide mixing with propanone employing calorimetric approaches. J Loss Prevent Process Ind. 2012; 25, 142–147.

  36. Liang XM, Cheng YC, Lin WC, Tung PH, Huang HQ, Pan XH, Shu CM, Jiang JC. Analysis and characterisation of 1-butyl-3-methylimidazolium hexafluorophosphate as a humectant of nitrocellulose. J Pre-proof. 2020.

  37. Zhang F, Chen MM, Jia XW, Xu W, Shi N. Research on the effect of resin on the thermal stability of hydrogen peroxide. Process Saf Environ Prot. 2019;126:1–6.

    Article  CAS  Google Scholar 

  38. Li XR, Koseki H. SADT prediction of autocatalytic material using isothermal calorimetry analysis. Thermochim Acta. 2005;431:113–6.

    Article  CAS  Google Scholar 

  39. Pan Y, Zhang Y, Jiang J, Ding L. Prediction of the self-accelerating decomposition temperature of organic peroxides using the quantitative structure–property relationship (QSPR) approach. J Loss Prev Process Ind. 2014;31:41–9.

    Article  CAS  Google Scholar 

  40. Tseng JM, Lin YF. Evaluation of a tert-Butyl Peroxy benzoate Runaway Reaction by Five Kinetic Models. Ind Eng Chem Res. 2011;50:4783–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the Major Program of the National Natural Science Foundation of China (51874181, 51834007, 21436006, 51804167), the Major Projects of the Natural Science Research for Colleges in Jiangsu Province (17KJA620002), the National Key Research and Development Program (2016YFC0801500), the Priority Academic Program Development of the Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-Hai Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Wei, CY., Hua, M. et al. Analysis of thermal hazards of tert-butylperoxy-2-ethylhexyl carbonate by calorimetric technique. J Therm Anal Calorim 147, 2689–2700 (2022). https://doi.org/10.1007/s10973-021-10619-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10619-3

Keywords

Navigation