Skip to main content
Log in

A deep investigation into the thermal degradation of urethane dimethacrylate polymer

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This work investigates in depth the thermal degradation process of a polymer of urethane dimethacrylate (UDMA). UDMA monomer has been widely used in dental restorations and biomaterials. The use of density functional theory (DFT) calculations provided the bases for understanding the structure and reactivity of the UDMA monomer. Simultaneous thermogravimetry–differential thermal analysis, Photovisual Differential Scanning Calorimetry, and mid-infrared spectroscopy (MIR) were used to examine the depolymerization and degradation process. Non-isothermal kinetics made it possible to determine the best fit (n-dimensional nucleation according to Avrami–Erofeev followed by two competitive processes: nth order with autocatalysis by-product and reaction of nth order). Furthermore, the UDMA-P lifetime (5%) was calculated to show a degradation time of 3 years at 100.0 °C. Notwithstanding, techniques such as MIR and nuclear magnetic resonance 13C, 1H linked to DFT calculations helped to elucidate the cleavage positions and possible degradation by-products of UDMA degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8.
Fig. 9

Similar content being viewed by others

References

  1. Moszner N, Salz U. New developments of polymeric dental composites. Prog Polym Sci. 2001;26:535–76.

    Article  CAS  Google Scholar 

  2. Siderou I, Tserki V, Papanastasiou G. Effect of chemical structure on degree of conversion in light cured dimethacrylate-based dental resins. Biomaterial. 2002;23:1819–29.

    Article  Google Scholar 

  3. Moszner N, Fisher UK, Angermann J, Rheinberger V. A partially aromatic urethane dimethacrylate for Bis-GMA in restorative composites. Dent Mater. 2008;24:694–9.

    Article  CAS  PubMed  Google Scholar 

  4. Moszner N, Salz U, Zimmermann J. Chemical aspects of self-etching enamel-dentin adhesives: a systematic review. Dent Mater. 2005;21:895–910.

    Article  CAS  PubMed  Google Scholar 

  5. Du M, Zheng Y. Modification of Silica nanoparticles and their application in UDMA dental polymeric composites. Polym Composite. 2007;28:198–207.

    Article  CAS  Google Scholar 

  6. Floyd CJE, Dickens SH. Network structure of Bis-GMA and UDMA-based resin systems. Dent Mater. 2006;22:1143–9.

    Article  CAS  PubMed  Google Scholar 

  7. Ferracane JL. Resin composite-state of the art. Dent Mater. 2011;27:29–38.

    Article  CAS  PubMed  Google Scholar 

  8. Atai M, Ahmadi M, Babanzadeh S, Watts DC. Synthesis, characterization, shrinkage and curing kinetics of a new low-shrinkage urethane dimethacrylate monomer for dental applications. Dent Mater. 2007;23:1030–41.

    Article  CAS  PubMed  Google Scholar 

  9. Landuyt KLV, Snauwaert J, Munc JD, Peumans M, Yoshida Y, Poitevin A, Coutinho E, Suzuki K, Lambrechts P, Meerbeek BV. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials. 2007;28:3757–85.

    Article  PubMed  Google Scholar 

  10. Junling W, Xie X, Zhao H, Tay FR, Weir MD, Melo MAS, Oates TW, Zhang N, Zhang Q, Xu HHK. Development of a new class of self-healing and therapeutic dental resins. Polym Degrad Stabilit. 2019;163:87–99.

    Article  Google Scholar 

  11. Alarcon RT, Santos GC, Oliveira AR, Silva-Filho LC, Bannach G. Synthesis of luminescent polymers in the UV light region from dimethacrylate monomer using novel quinoline dyes. J Appl Polym Sci. 2019;136:47461.

    Article  Google Scholar 

  12. Gupta SK, Saxena P, Pant VA, Pant AB. Release and toxicity of dental resin composite. Toxicol Intern. 2012;19(3):225–34.

    Article  Google Scholar 

  13. Pomes B, Derue I, Lucas A, Nguyen JF, Richaud E. Water ageing of urethane dimethacrylate networks. Polym Degrad Stabil. 2018;154:195–202.

    Article  CAS  Google Scholar 

  14. Altintas SH, Usumez A. Evaluation of monomer leaching from a dual cured resin cement. J Biomed Mater Res B Appl Biomater. 2008;86(2):523–9.

    Article  PubMed  Google Scholar 

  15. Vervliet P, Plas JVP, Nys SD, Duca RC, Boonen I, Elskens M, Landuyt KLV, Covaci A. Investigating the in vitro metabolism of the dental resin monomers BisGMA, BisPMA, TCD-DI-HEA and UDMA using human liver microsomes and quadrupole time of flight mass spectrometry. Toxicol. 2019;420:1–10.

    Article  CAS  Google Scholar 

  16. Maeng WY, Jeon JW, Lee JB, Lee H, Koh YH, Kim HE. Photocurable ceramic/monomer feedstocks containing terpene crystals as sublimable porogen for UV curing-assisted 3D plotting. J Euro Ceram Soc. 2020;40:3469–77.

    Article  CAS  Google Scholar 

  17. Yue J, Zhao P, Gerasimov JY, Lagemaat M, Grothenhuis A, Rustema-Abbing M, Mei HC, Busscher HJ, Herrmann A, Ren Y. 3D-printable antimicrobial composite resins. Advan Func Mater. 2015;25:6756–67.

    Article  CAS  Google Scholar 

  18. Bagheri A, Jin J. Photopolymerization in 3D printing. ACS Appl Polym Mater. 2019;1:593–611.

    Article  CAS  Google Scholar 

  19. Alarcon RT, Gaglieri C, Bannach G. Dimethacrylate polymers with different glycerol content: thermal study, degree of conversion, and morphological features. J Therm Anal Calorim. 2018;132(3):1579–91.

    Article  CAS  Google Scholar 

  20. Sbirrazzuoli N, Vincent L, Mija A, Guigo N. Integral, differential and advanced isoconversional methods complex mechanisms and isothermal predicted conversion–time curves. Chemom Intell Lab Syst. 2009;96:219–26.

    Article  CAS  Google Scholar 

  21. Vyazovkin S, Vincent L, Sbirrazzuoli N. Thermal denaturation of collagen analyzed by isoconversional method. Macromol Biosci. 2007;7:1181–6.

    Article  CAS  PubMed  Google Scholar 

  22. Jablonskli AE, Lang AJ, Vyazovkin S. Isoconversional kinetics of degradation of polyvinylpyrrolidone used as a matrix for ammonium nitrate stabilization. Thermochim Acta. 2008;474:78–80.

    Article  Google Scholar 

  23. Chaudary GC, Juneja HD, Gharpure MP. Thermal degradation behaviour of some metal chelate polymer compounds with bis(bidentate) ligand by TG/DTG/DTA. J Therm Anal Calorim. 2013;112:637–347.

    Article  Google Scholar 

  24. Chaudary GC, Ali P, Gandhare NV, Tanna JA, Juneja HD. Thermal decomposition kinetics of some transition metal coordination polymers of fumaroyl bis (paramethoxyphenylcarbamide) using DTG/DTA techniques. Arab J Chem. 2019;12(7):1070–82.

    Article  Google Scholar 

  25. Chaudary GC, Juneja HD, Gandhare NV. Evaluation of kinetic parameters from TG/DTG data of chelate polymer compounds of isophthaoyl bis (paramethoxyphenylcarbamide). J Chin Adv Mater Soc. 2013;1(4):305–16.

    Article  Google Scholar 

  26. Moukhina E. Thermal decomposition of AIBN part C: SADT calculation of AIBN based on DSC experiments. Thermochim acta. 2015;621:25–35.

    Article  CAS  Google Scholar 

  27. Silva JEE, Alarcon RT, Gaglieri C, Magdalena AG, Silva-Filho LC, Bannach G. New thermal study of polymerization and degradation kinetics of methylene diphenyl diisocyanate. J Therm Anal Calorim. 2018;133(3):1455–62.

    Article  Google Scholar 

  28. Pires OAB, Alarcon RT, Gaglieri C, Silva-Filho LC, Bannach G. Synthesis and characterization of a biopolymer of glycerol and macadamia oil. J Therm Anal Calorim. 2019;137(1):161–70.

    Article  CAS  Google Scholar 

  29. Achilias DS, Karabela MM, Siderou ID. Thermal degradation of light-cured dimethacrylate resins Part I. Isoconversional kinetic analysis Thermochim acta. 2008;472:74–83.

    Article  CAS  Google Scholar 

  30. Achilias DS, Karabela MM, Siderou ID. Thermal degradation and isoconversional kinetic analysis of light-cured dimethacrylate copolymers. J Therm Anal Calorim. 2010;99:917–23.

    Article  CAS  Google Scholar 

  31. Vouvoudi EC, Achilias DS, Siderou ID. Dental light-cured nanocomposites based on a dimethacrylate matrix: thermal degradation and isoconversional kinetic analysis in N2 atmosphere. Thermochim acta. 2015;599:63–72.

    Article  CAS  Google Scholar 

  32. Stanescu PO, Florea NM, Lungu A, Iovu H. Kinetic study on the thermal degradation of UDMA-BisGMA copolymers. Mater Plast. 2011;48:148153.

    Google Scholar 

  33. Vyadzovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochin Acta. 2011;520:1–19.

    Article  Google Scholar 

  34. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  35. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci. 1964;6:183–95.

    Google Scholar 

  36. American Society for Testing and Materials – ASTM (1999) ASTM-E1641: Standard test method for decomposition kinetics by Thermogravimetry. American Society for Testing and Materials – ASTM, West Conshohocken.

  37. American Society for Testing and Materials – ASTM. ASTM-E1877: Standard practice for calculating thermal endurance of materials from thermogravimetric decomposition data, 1999. American Society for Testing and Materials – ASTM, West Conshohocken.

  38. Ditchfield RHWJ, Hehre WJ, Pople JA. Self-consistent molecular-orbital methods IX an extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys. 1971;54(2):724–8.

    Article  CAS  Google Scholar 

  39. Borak J, Fields C, Andrews LS, Pemberton MA. Methyl methacrylate and respiratory sensitization: a critical review. Crit Rev Toxicol. 2010;41:230–68.

    Article  Google Scholar 

  40. Gosavi SS, Gosavi SY, Alla RK. Local and systematic effects of unpolymerized monomers. Dent Res J. 2010;7:82–7.

    CAS  Google Scholar 

  41. Politzer P, Laurence PR, Jayasuriya K. Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena. Environ Heath Perspect. 1985;61:191–202.

    Article  CAS  Google Scholar 

  42. Hayama T, Takahashi K, Kikutake K, Yokota I, Nemoto K. Analysis of polymerization behavior of dental dimethacrylate monomers by differential scanning calorimetry. J Oral Sci. 1999;41:9–13.

    Article  Google Scholar 

  43. Scott G. Initiation process in polymer degradation. Polym Degrad Stabil. 1995;48:315–24.

    Article  CAS  Google Scholar 

  44. DiNenno PJ, Drysdale D, Beyler CL, Walton WD, Custer RLP, Hall JR, Watts JM. Handbook of fire protection engineering. 3rd ed. Massachusetts: National Fire Protection Association; 2002.

    Google Scholar 

  45. Opeida A, Sheparovych RB. Inhibition by hydrogen peroxide in the radical chain oxidation of hydrocarbons by molecular oxygen. Theoric Exper Chem. 2019;55:36–42.

    Article  CAS  Google Scholar 

  46. Decker C, Jenkins AD. Kinetic approach of O2 inhibition in ultraviolet- and laser-induced polymerization. Macromol. 1985;18:1241–4.

    Article  CAS  Google Scholar 

  47. Bhanu VA, Kishore K. Role of oxygen polymerization reactions. Chem Rev. 1991;91:99–117.

    Article  CAS  Google Scholar 

  48. Christmann J, Ley C, Allonas X, Ibrahim A, Croutxé-Barghorn C. Polymer. 2019;160:254–64.

    Article  CAS  Google Scholar 

  49. Alarcon RT, Gaglieri C, da Silva BHT, da Silva LC, Bannach G. New fluorescein dye derivatives and their use as an efficient photoinitiator using blue light LED. J Photoch photobio A. 2017;343:112–8.

    Article  CAS  Google Scholar 

  50. Alarcon RT, Gaglieri C, de Oliveira AR, Bannach G. Use of DSC in degree of conversion of dimethacrylet polymers: easier and faster than MIR technique. J Therm Anal Calorim. 2018;132:1423–7.

    Article  CAS  Google Scholar 

  51. Ros S, Braido RS, Castro NLS, Brandão ALT, Schwaab M, Pinto JC. Modelling the chemical recycling of crosslinked poly(methyl methacrylate): Kinetics of depolymerisation. J Anal Appl Pyrol. 2019;144:104706.

    Article  Google Scholar 

  52. Opfermann J. Kinetic analysis using a multivariate nonlinear regression. J Therm Anal Calorim. 2000;60:641–58.

    Article  CAS  Google Scholar 

  53. Vyazovkin S, Burnham AK, Favergeon L, Koga N, Moukhina E, Pérez-Maqueda LA, Sbirrazzuoli N. ICTAC kinetics committee recommendations for analysis of multi-step kinetics. Thermochim Acta. 2020;689:178597.

    Article  CAS  Google Scholar 

  54. Moukhina E. Determination of kinetic mechanisms for reactions measured with thermoanalytical instruments. J Therm Anal Calorim. 2012;109:1203–14.

    Article  CAS  Google Scholar 

  55. Vyazovkin S. Kinetic effects of pressure on decomposition of solids. Inter Rev Phys Chem. 2020;39:35–66.

    Article  CAS  Google Scholar 

  56. Helfferich FG. Kinetics of multistep reactions. 2nd ed. Amsterdam: Elsevier; 2004.

    Google Scholar 

  57. Chaudary GC, Juneja HD, Pagadala R, Gandhare NV, Gharpure MP. Synthesis, characterisation and thermal degradation behaviour of some coordination polymers by using TG–DTG and DTA techniques. J Saud Chem Soc. 2015;19:442–53.

    Article  Google Scholar 

  58. Silverstein RM, Webster FX, Kiemle DJ. Spectrometric Identification of organic compounds. 7th ed. Rio de Janeiro: Livros Técnicos e Científicos Editora S.A; 2007.

    Google Scholar 

  59. Durán I, Ortiz P. FTIR monomer conversion analysis of UDMA-based dental resins. J Oral Rehab. 1996;23(9):632–7.

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank CAPES (Grants. 024/2012 Pro-equipment), POSMAT/UNESP, São Paulo State Foundation—FAPESP (Grants 2017/08820-8, 2018/03460-6, 2015/00615-0, 2016/01599-1, and 2018/14506-7), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Grants. 302769/2018-8 and 301857/2018-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert Bannach.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3188 kb)

Supplementary material 1 (MP4 830 kb)

Supplementary material 1 (MP4 2039 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alarcon, R.T., Gaglieri, C., dos Santos, G.C. et al. A deep investigation into the thermal degradation of urethane dimethacrylate polymer. J Therm Anal Calorim 147, 3083–3097 (2022). https://doi.org/10.1007/s10973-021-10610-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10610-y

Keywords

Navigation