Skip to main content
Log in

Aliphatic Polyesters for Biomedical Purposes: Design and Kinetic Regularities of Degradation in vitro

  • CHEMICAL PHYSICS OF BIOLOGICAL PROCESSES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

This paper presents a brief review of the methods for creating and diagnosing materials based on aliphatic polyesters used to create temporary prostheses and dosage forms of prolonged action. After a review of polymeric materials used in biomedicine, the special role of aliphatic polyesters in achieving these goals is substantiated. The need for impregnating polymeric biomedical products with biologically active compounds and the main approaches currently used for this are described. Particular attention is paid to green supercritical fluid (SCF) technologies for the formation of porous scaffolds with simultaneous impregnation, which makes it possible to control the structure, size, connectivity of pores, and the distribution of dopants. The possibilities of EPR spectroscopy (spin probe method) are discussed, which make it possible to obtain unique data that characterize the structure of polymer matrices and the features of their degradation with the release of paramagnetic additives. Modern ideas about the mechanisms of degradation of aliphatic polyesters and the release of biologically active substances from them are presented. Mathematical approaches to modeling qualitatively different experimental curves of the release of low molecular weight substances from poly-D,L-lactide (PDLLA) films of different thicknesses are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. S. Ramakrishna, J. Mayer, E. Wintermantel, et al., Compos. Sci. Technol. 61, 1189 (2001).

    Article  CAS  Google Scholar 

  2. M. Vert, Biomacromolecules 6, 538 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Y. Ji, K. Ghosh, X. Shu, et al., Biomaterials 27, 3782 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. E. Piskin, J. Biomater. Sci. Polym. Ed. 6, 775 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. F. Asghari, M. Samiei, K. Adibkia, et al., Artif. Cells Nanomed. Biotechnol. 45, 185 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. N. Iqbal, A. S. Khan, A. Asif, et al., Int. Mater. Rev. 64, 91 (2019).

    Article  CAS  Google Scholar 

  7. P. Gunatillake, R. Mayadunne, and R. Adhikari, Biotechnol. Ann. Rev. 12, 301 (2006).

    Article  CAS  Google Scholar 

  8. B. Dhandayuthapani, Y. Yoshida, T. Maekawa, et al., Int. J. Polym. Sci. 2011, 1 (2011).

    Article  Google Scholar 

  9. S. Commandeur, H. M. M. van Beusekom, and W. J. van der Giessen, J. Interv. Cardiol. 19, 500 (2006).

    Article  PubMed  Google Scholar 

  10. P. Gentile, V. Chiono, I. Carmagnola, et al., Int. J. Mol. Sci. 15, 3640 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. J. Rich, H. Korhonen, R. Hakala, et al., Macromol. Biosci. 9, 654 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. J.-W. Rhim, A. K. Mohanty, S. P. Singh, et al., J. Appl. Polym. Sci. 101, 3736 (2006).

    Article  CAS  Google Scholar 

  13. V. A. Demina, N. G. Sedush, E. N. Goncharov, S. V. Krasheninnikov, A. E. Krupnin, N. G. Goncharov, and S. N. Chvalun, Nanotechnol. Russ. 16, 2 (2021).

    Article  Google Scholar 

  14. A. J. R. Lasprilla, G. A. R. Martinez, B. H. Lunelli, et al., Biotechnol. Adv. 30, 321 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. L. Chang, J. Liu, J. Zhang, et al., Polym. Chem. 4, 1430 (2013).

    Article  CAS  Google Scholar 

  16. J. P. Vacanti and R. Langer, Lancet 354, S132 (1999).

    Article  Google Scholar 

  17. P. X. Ma, Mater. Today 7 (5), 30 (2004).

    Article  CAS  Google Scholar 

  18. M. N. Egorikhina, P. A. Mukhina, and I. I. Bronnikova, Kompleks. Probl. Serd.-Sosud. Zabolev. 9 (1), 92 (2020).

    Google Scholar 

  19. R. R. Chen and D. J. Mooney, Pharm. Res. 20, 1103 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. D. Corry and J. Moran, Biomaterials 19, 1295 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. M. A. González Corchón, M. Salvado, B. J. de la Torre, et al., Biomaterials 27, 1778 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. T. M. Freyman, I. V. Yannas, and L. J. Gibson, Prog. Mater. Sci. 46, 273 (2001).

    Article  CAS  Google Scholar 

  23. M. E. Gomes and R. L. Reis, Int. Mater. Rev. 49, 274 (2004).

    Article  CAS  Google Scholar 

  24. V. Santos-Rosales, A. Iglesias-Mejuto, and C. A. Garc, Polymers (Basel) 12, 533 (2020).

    Article  CAS  Google Scholar 

  25. M. V. Vedunova, P. S. Timashev, T. A. Mishchenko, et al., Cell Technol. Biol. Med. 161, 616 (2016).

    CAS  Google Scholar 

  26. C. A. García-González, A. Concheiro, and C. Alvarez-Lorenzo, Bioconjugate Chem. 26, 1159 (2014).

    Article  CAS  Google Scholar 

  27. E. N. Golubeva, N. A. Chumakova, S. V. Kuzin, et al., J. Supercrit. Fluids 158, 104748 (2020).

    Article  CAS  Google Scholar 

  28. S. M. Howdle, M. S. Watson, M. J. Whitaker, et al., Chem. Commun., No. 1, 109 (2001).

  29. E. N. Antonov, A. G. Dunaev, S. A. Minaeva, et al., Pharm. Chem. J. 52, 69 (2018).

    Article  CAS  Google Scholar 

  30. N. A. Chumakova, E. N. Golubeva, T. A. Ivanova, et al., Sverkhkrit. Flyuidy: Teor. Prakt. 13, 86 (2018).

    Google Scholar 

  31. H. Tai, M. L. Mather, D. Howard, et al., Eur. Cells Mater. 14, 64 (2007).

    Article  CAS  Google Scholar 

  32. C. Song, J. Zhang, S. Li, et al., Chin. J. Chem. Eng. 29, 426 (2021).

    Article  CAS  Google Scholar 

  33. M. Floren, S. Spilimbergo, A. Motta, et al., J. Biomed. Mater. Res., Part B 99, 338 (2011).

    Google Scholar 

  34. M. Z. Moghadam, S. Hassanajili, F. Esmaeilzadeh, et al., J. Mech. Behav. Biomed. Mater. 69, 115 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. V. Santos-Rosales, M. Gallo, P. Jaeger, et al., J. Supercrit. Fluids 166, 105012 (2020).

    Article  CAS  Google Scholar 

  36. M. Bhamidipati, A. M. Scurto, and M. S. Detamore, Tissue Eng., Part B 19, 221 (2013).

    CAS  Google Scholar 

  37. L. J. White, V. Hutter, H. Tai, et al., Acta Biomater. 8, 61 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. E. Reverchon, R. Adami, S. Cardea, et al., J. Supercrit. Fluids 47, 484 (2009).

    Article  CAS  Google Scholar 

  39. Application of Supercritical Fluids in Industrial Analysis, Ed. by J. R. Dean (Chapmann and Hall, London, 1993), p. 1.

    Google Scholar 

  40. D. Yu. Zalepugin, N. A. Til’kunova, I. V. Chernyshova, et al., Sverkhkrit. Flyuidy: Teor. Prakt. 1 (1), 27 (2006).

    Google Scholar 

  41. D. A. Zimnyakov, V. K. Popov, N. B. Minaev, et al., Sverkhkrit. Flyuidy: Teor. Prakt. 15 (2), 27 (2020).

    Google Scholar 

  42. L. I. Cabezas, V. Fernandez, R. Mazarro, et al., J. Supercrit. Fluids 63, 155 (2012).

    Article  CAS  Google Scholar 

  43. L. I. Cabezas, I. Gracia, M. T. García, et al., J. Supercrit. Fluids 80, 1 (2013).

    Article  CAS  Google Scholar 

  44. D. Yu. Zalepugin, N. A. Til’kunova, and I. V. Chernyshova, Sverkhkrit. Flyuidy: Teor. Prakt. 14 (3), 11 (2019).

    Google Scholar 

  45. C. Kroll, K. Mäder, R. Stößer, et al., Eur. J. Pharm. Sci. 3, 21 (1995).

    Article  CAS  Google Scholar 

  46. K. Mäder, Biomaterials 17, 457 (1996).

    Article  PubMed  Google Scholar 

  47. A. Brunner, K. Mäder, and A. Göpferich, Pharm. Res. 16, 847 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. I. Katzhendler, K. Mäder, and M. Friedman, Int. J. Pharm. 200, 161 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. S. Kempe, H. Metz, and K. Mader, J. Control. Release 130, 220 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. S. Kempe, H. Metz, P. G. C. Pereira, et al., Eur. J. Pharm. Biopharm. 74, 102 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. S. Kempe, H. Metz, and K. Mäder, Eur. J. Pharm. Biopharm. 74, 55 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. F. Eisenächer, A. Schädlich, and K. Mäder, Int. J. Pharm. 417, 204 (2011).

    Article  PubMed  CAS  Google Scholar 

  53. A. L. Buchachenko and A. M. Vasserman, Stable Radicals (Khimiya, Moscow, 1973) [in Russian].

    Google Scholar 

  54. A. M. Vasserman and A. L. Kovarskii, Spin Labels and Probes in Physical Chemistry of Polymers (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  55. S. Stoll and A. Schweiger, J. Magn. Reson. 178, 42 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Nitroxides – Theory, Experiment and Applications, Ed. by A. I. Kokorin (InTech, Rijeka, Croatia, 2012).

    Google Scholar 

  57. N. A. Chumakova, T. A. Ivanova, E. N. Golubeva, et al., Appl. Magn. Reson. 49, 511 (2018).

    Article  CAS  Google Scholar 

  58. N. A. Chumakova, S. V. Kuzin, and A. I. Grechishnikov, Appl. Magn. Reson. 50, 1125 (2019).

    Article  CAS  Google Scholar 

  59. Nitroxides – Theory, Experiment and Applications, Ed. by A. I. Kokorin (InTech, Rijeka, Croatia, 2012).

    Google Scholar 

  60. D. Lurie and K. Mäder, Adv. Drug Deliv. Rev. 57, 1171 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. A. Blank, J. H. Freed, N. P. Kumar, et al., J. Control. Release 111, 174 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. K. Mäder, G. Bacic, A. Domb, et al., J. Pharm. Sci. 86, 126 (1997).

    Article  PubMed  Google Scholar 

  63. L. G. Griffith, Acta Mater. 48, 263 (2000).

    Article  CAS  Google Scholar 

  64. A. Merkli, C. Tabatabay, R. Gurny, et al., Prog. Polym. Sci. 23, 563 (1998).

    Article  CAS  Google Scholar 

  65. E. S. Morokov, V. A. Demina, N. G. Sedush, et al., Acta Biomater. 109, 61 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. G. Schliecker, C. Schmidt, S. Fuchs, et al., Biomaterials 24, 3835 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. G. Gorrasi and R. Pantani, Adv. Polym. Sci. 279, 119 (2018).

    Article  CAS  Google Scholar 

  68. M. Vert, G. Schwarch, and J. Coudane, J. Macromol. Sci., Part A 32, 787 (1995).

    Google Scholar 

  69. Y. Aso, S. Yoshioka, A. Li Wan Po, et al., J. Control. Release 31, 33 (1994).

    Article  CAS  Google Scholar 

  70. T. Heya, H. Okada, Y. Ogawa, et al., J. Pharm. Sci. 83, 636 (1994).

    Article  CAS  PubMed  Google Scholar 

  71. S. K. Saha and H. Tsuji, Polym. Degrad. Stab. 91, 1665 (2006).

    Article  CAS  Google Scholar 

  72. S. K. Saha and H. Tsuji, Macromol. Mater. Eng. 291, 357 (2006).

    Article  CAS  Google Scholar 

  73. L. I. Cabezas, I. Gracia, A. de Lucas, et al., Ind. Eng. Chem. Res. 53, 15374 (2014).

    Article  CAS  Google Scholar 

  74. J. Siepmann, Adv. Drug Deliv. Rev. 48, 229 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. S. J. Holland, A. M. Jolly, M. Yasin, et al., Biomaterials 8, 289 (1987).

    Article  CAS  PubMed  Google Scholar 

  76. K. Mäder, B. Bittner, Y. Li, et al., Pharm. Res. 15, 787 (1998).

    Article  PubMed  Google Scholar 

  77. N. A. Chumakova, E. N. Golubeva, S. V. Kuzin, T. A. Ivanova, et al., Polymers (Basel) 12 (12), 1 (2020).

    Article  CAS  Google Scholar 

  78. C. S. Proikakis, N. J. Mamouzelos, P. A. Tarantili, et al., Polym. Degrad. Stab. 91, 614 (2006).

    Article  CAS  Google Scholar 

  79. A. Frank, S. K. Rath, and S. S. Venkatraman, J. Control. Release 102, 333 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Y. Wan, Y. Fang, H. Wu, et al., J. Biomed. Mater. Res., Part A 80, 776 (2007).

    Google Scholar 

  81. T. Tarvainen, T. Karjalainen, M. Malin, et al., J. Control. Release 81, 251 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. T. Tarvainen, M. Malin, I. Barragan, et al., Int. J. Pharm. 310, 162 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. C. Witt, K. Mader, and T. Kissel, Biomaterials 21, 931 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. J. Burke, R. Donno, R. D’Arcy, et al., Biomacromolecules 18, 728 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. H. Tsuji and Y. Ikada, J. Polym. Sci., Part A 36, 59 (1998).

    Article  CAS  Google Scholar 

  86. H. Tsuji, Polymer (Guildf.) 43, 1789 (2002).

    Article  CAS  Google Scholar 

  87. D. Klose, F. Siepmann, K. Elkharraz, et al., Int. J. Pharm. 354, 95 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. I. Grizzi, H. Garreau, S. Li, et al., Biomaterials 16, 305 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. H. Tsuji and Y. Ikada, Polym. Degrad. Stab. 67, 179 (2000).

    Article  CAS  Google Scholar 

  90. S. J. de Jong, E. R. Arias, D. T. S. Rijkers, et al., Polymer (Guildf.) 42, 2795 (2001).

    Article  CAS  Google Scholar 

  91. Poly(factic acid): Synthesis, Structures, Properties, Processings and Applications, Ed. by R. Auras, L. Lim, S. Selke, and H. Tsnji (Wiley, Hoboken, NJ, 2010), Part 4, Chap. 21.

  92. E. W. Fischer, H. J. Sterzel, and G. Wegner, Kolloid-Zeitschr. Zeitschr. Polym. 251, 980 (1973).

    CAS  Google Scholar 

  93. H. V. Maulding, T. R. Tice, D. R. Cowsar, et al., J. Control. Release 3, 103 (1986).

    Article  CAS  Google Scholar 

  94. A. A. Bobko, I. A. Kirilyuk, I. A. Grigor’ev, et al., Free Radical. Biol. Med. 42, 404 (2007).

    Article  CAS  Google Scholar 

  95. Q. Xu, S. E. Chin, C.-H. Wang, et al., Biomaterials 34, 3902 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. C. Strobel, N. Bormann, A. Kadow-Romacker, et al., J. Control. Release 156, 37 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. E. Zhang, C. Zhu, J. Yang, et al., Mater. Sci. Eng. C 58, 278 (2016).

    Article  CAS  Google Scholar 

  98. A. S. Determan, B. G. Trewyn, V. S. Y. Lin, et al., J. Control. Release 100, 97 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. B. S. Kim, J. M. Oh, K. S. Kim, et al., Biomaterials 30, 902 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. J. C. Kang and S. P. Schwendeman, Macromolecules 36, 1324 (2003).

    Article  CAS  Google Scholar 

  101. L. Brannon-Peppas and N. A. Peppas, J. Control. Release 8, 267 (1989).

    Article  CAS  Google Scholar 

  102. A. Fayzullin, S. Churbanov, N. Ignatieva, et al., Biomedicines 9, 853 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. S. Jonnalagadda and D. H. Robinson, J. Appl. Polym. Sci. 93, 2025 (2004).

    Article  CAS  Google Scholar 

  104. Y. Wang, P. Challa, D. L. Epstein, et al., Biomaterials 25, 4279 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. C. Wu, Y. Ramaswamy, Y. Zhu, et al., Biomaterials 30, 2199 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. A. Mashak, H. Mobedi, and H. Mahdavi, Pharm. Sci. (Iran.) 21, 77 (2015).

    Google Scholar 

  107. Y. Dong, Z. Zhang, and S.-S. Feng, Int. J. Pharm. 350, 166 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. G. R. Owen, J. K. Jackson, B. Chehroudi, et al., J. Biomed. Mater. Res., Part A 95, 857 (2010).

    Google Scholar 

  109. K. Lee, E. A. Silva, and D. J. Mooney, J. R. Soc. Interface 8, 153 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. D. Ma and A. J. McHugh, Int. J. Pharm. 388, 1 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. S. Fredenberg, M. Wahlgren, M. Reslow, et al., Int. J. Pharm. 415, 34 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. S. Cardea, L. Baldino, M. Scognamiglio, et al., J. Mater. Sci. - Mater. Med. 25, 989 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. V. E. Santo, A. R. C. Duarte, E. G. Popa, et al., J. Control. Release 162, 19 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. M. Nof and L. D. Shea, J. Biomed. Mater. Res. 59, 349 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. T. P. Richardson, M. C. Peters, A. B. Ennett, et al., Nat. Biotechnol. 19, 1029 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. A. R. C. Duarte, V. E. Santo, A. Alves, et al., J. Supercrit. Fluids 79, 177 (2013).

    Article  CAS  Google Scholar 

  117. D. Velasco, L. Benito, M. Fernández-Gutiérrez, et al., J. Supercrit. Fluids 54, 335 (2010).

    Article  CAS  Google Scholar 

  118. T. A. Ivanova, N. A. Chumakova, E. N. Golubeva, et al., Sverkhkrit. Flyuidy: Teor. Prakt. 14 (1), 67 (2019).

    Google Scholar 

  119. S. S. Shah, Y. Cha, and C. G. Pitt, J. Control. Release 18, 261 (1992).

    Article  CAS  Google Scholar 

  120. Y. Xu, C. S. Kim, D. M. Saylor, et al., J. Biomed. Mater. Res., Part B 105, 1692 (2017).

    CAS  Google Scholar 

  121. C. Raman, C. Berkland, K. Kim, et al., J. Control. Release 103, 149 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. C. Wischke and S. P. Schwendeman, Int. J. Pharm. 364, 298 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. J. Siepmann and F. Siepmann, J. Control. Release 161, 351 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. J. Yoo and Y. Won, ACS Biomater. Sci. Eng. 6, 6053 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. A. Mochizuki, T. Niikawa, I. Omura, et al., J. Appl. Polym. Sci. 108, 3353 (2008).

    Article  CAS  Google Scholar 

  126. W. L. Webber, F. Lago, C. Thanos, et al., J. Biomed. Mater. Res. 41, 18 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. S. Fredenberg, M. Wahlgren, M. Reslow, et al., J. Control. Release 150, 142 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. T. G. Park, Biomaterials 16, 1123 (1995).

    Article  CAS  PubMed  Google Scholar 

  129. L. J. Ford, K. Mitchell, P. Rowe, et al., Int. J. Pharm. 71, 95 (1991).

    Article  CAS  Google Scholar 

  130. C. Kao, S. Chen, and M. Sheu, J. Control. Release 44, 263 (1997).

    Article  CAS  Google Scholar 

  131. W. D. Lindner and B. C. Lippold, Pharm. Res. 12, 1781 (1995).

    Article  CAS  PubMed  Google Scholar 

  132. N. A. Peppas and J. J. Sahlin, Int. J. Pharm. 57, 169 (1989).

    Article  CAS  Google Scholar 

  133. L. L. Lao, S. S. Venkatraman, and N. A. Peppas, Eur. J. Pharm. Biopharm. 70, 796 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. P. R. Batycky, J. Hanes, R. Langer, et al., J. Pharm. Sci. 86, 1464 (1997).

    Article  CAS  PubMed  Google Scholar 

  135. X. Zhu and R. D. Braatz, J. Biomed. Mater. Res., Part A 103, 2269 (2015).

    CAS  Google Scholar 

  136. A. Charlier, B. Leclerc, and G. Couarraze, Int. J. Pharm. 200, 115 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. N. Faisant, J. Akiki, F. Siepmann, et al., Int. J. Pharm. 314, 189 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. T. Casalini, F. Rossi, S. Lazzari, et al., Mol. Pharm. 11, 4036 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. R. Wada, S. Hyon, and Y. Ikada, J. Control. Release 37, 151 (1995).

    Article  CAS  Google Scholar 

  140. A. Joshi and K. J. Himmelstein, J. Control. Release 15, 95 (1991).

    Article  CAS  Google Scholar 

  141. F. Baino, Acta Biomater. 7, 3248 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Y. You, B.-M. Min, S. J. Lee, et al., J. Appl. Polym. Sci. 95, 193 (2005).

    Article  CAS  Google Scholar 

  143. Y. You, S. W. Lee, J. H. Youk, et al., Polym. Degrad. Stab. 90, 441 (2005).

    Article  CAS  Google Scholar 

  144. J. Bergsma et al., Biomaterials 16, 25 (1995).

    Article  CAS  PubMed  Google Scholar 

  145. C. M. Agrawal and R. B. Ray, J. Biomed. Mater. Res. 55, 141 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. P. Sarazin, X. Roy, and B. D. Favis, Biomaterials 25, 5965 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. M. Vert, S. Li, H. Garreau, et al., Angew. Macromol. Chem. 247, 239 (1997).

    Article  CAS  Google Scholar 

  148. Y. A. Hussain and C. S. Grant, J. Supercrit. Fluids 71, 127 (2012).

    Article  CAS  Google Scholar 

  149. M. Ramchandani and D. Robinson, J. Control. Release 54, 167 (1998).

    Article  CAS  PubMed  Google Scholar 

  150. A. R. C. Duarte, J. F. Mano, and R. L. Reis, Acta Biomater. 5, 2054 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. R. Yoganathan, R. Mammucari, and N. R. Foster, J. Phys.: Conf. Ser. 215, 012087 (2010).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank P.S. Timashev and N.A. Chumakova for their valuable comments and discussions during the study.

Funding

This study was performed as part of a state order (registration number АААА-А21-121011590090-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Ivanova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, T.A., Golubeva, E.N. Aliphatic Polyesters for Biomedical Purposes: Design and Kinetic Regularities of Degradation in vitro. Russ. J. Phys. Chem. B 16, 426–444 (2022). https://doi.org/10.1134/S1990793122030162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122030162

Keywords:

Navigation