Skip to main content
Log in

Numerical study on the thermo-hydraulic performance analysis of fly ash nanofluid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The heat transfer and flow characteristics of water-based fly ash nanofluid for concentrations of 0.1–1.5 vol.% that flow through a copper tube at an inlet fluid temperature of 303 K with constant heat flux boundary conditions are estimated numerically. Stability, viscosity, and thermal conductivity of fly ash nanofluid have been determined experimentally and compared with correlations available in the literature. STAR CCM + software was used to solve the governing equations using the finite volume method (FVM). Water and stable fly ash nanofluid were used as working fluids for the Reynolds number range of 4500–16,000. The Nusselt number and friction factor at 1.5% volume concentration are greater than the base fluid by 36% and 9.4%, respectively. The fly ash nanofluid showed a performance index (\(\eta\)) value of more than 1 at all concentrations undertaken, indicating that the use of fly ash nanofluid in heat transfer applications is beneficial. The highest \(\eta\) value is determined to be 1.5 approximately for a nanofluid concentration of 1.5 vol.%. The fly ash nanofluid exhibits enhanced heat transfer performance contrasted to SiO2 nanofluid. The utilization of fly ash particles for heat transfer enhancement can aid in the reduction of environmental pollution to a certain extent. Novel correlations are suggested for the estimation of fly ash nanofluid Nusselt number and friction factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

A s :

Surface area of the tube (m2)

C p :

Specific heat (J kg1 K1)

D :

Tube diameter (m)

d p :

Nanoparticle diameter (nm)

f:

Friction factor

h:

Heat transfer coefficient (W m2 K1)

I:

Turbulent intensity

kp:

Nanoparticle thermal conductivity (W m1 K1)

L :

Tube length (m)

m :

Mass (kg)

Nu :

Nusselt number

Pr :

Prandtl number

p :

Pressure drop (Pa)

Q :

Heat supplied (W)

q :

Heat flux (Wm2)

Re:

Reynolds number

S :

User-defined constant

T :

Temperature (K)

T avg :

Average temperature of working fluid (K)

T i :

Inlet fluid temperature (K)

T o :

Outlet fluid temperature (K)

T S :

Surface temperature (K)

t :

Time (s)

u :

Velocity in x-direction

V :

Fluid velocity (m s1)

v :

Velocity in y-direction

ƞ :

Performance index

μ :

Viscosity (mPa s)

ρ :

Density (kg m3)

φ :

Volume concentration

ϕ :

Scalar variable

σ :

Stefan–Boltzmann Constant

Ω:

Solid angle

bf:

Base fluid

fnp:

Fly ash particle

fnf:

Nanofluid

np:

Nanoparticle

p:

Particle

r:

Ratio

CFD:

Computational fluid dynamics

HTC:

Heat transfer coefficients

THW:

Transient hot wire method

References

  1. Said Z, Arora S, Bellos E. A review on performance and environmental effects of conventional and nanofluid-based thermal photovoltaics. Renew Sustain Energy Rev. 2018;94:302–16.

    Article  CAS  Google Scholar 

  2. Gupta M, Singh V, Kumar S, Dilbaghi N, Said Z. Up to date review on the synthesis and thermophysical properties of hybrid nanofluids. J Clean Prod. 2018;190:169–92.

    Article  CAS  Google Scholar 

  3. Gupta M, Singh V, Kumar R, Said Z. A review on thermophysical properties of nanofluids and heat transfer applications. Renew Sustain Energy Rev. 2017;74:638–70.

    Article  CAS  Google Scholar 

  4. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. IL: Argonne National Lab; 1995.

    Google Scholar 

  5. Said Z, Saidur R, Sabiha M, Hepbasli A, Rahim N. Energy and exergy efficiency of a flat plate solar collector using pH treated Al2O3 nanofluid. J Clean Prod. 2016;112:3915–26.

    Article  CAS  Google Scholar 

  6. Said Z, Saidur R, Sabiha M, Rahim N, Anisur M. Thermophysical properties of Single-Wall Carbon Nanotubes and its effect on exergy efficiency of a flat plate solar collector. Sol Energy. 2015;115:757–69.

    Article  CAS  Google Scholar 

  7. Said Z, Rahman S, Assad MEH, Alami AH. Heat transfer enhancement and life cycle analysis of a shell-and-tube heat exchanger using stable CuO/water nanofluid. Sustain Energy Technol Assess. 2019;31:306–17.

    Google Scholar 

  8. Said Z, Assad MEH, Hachicha AA, Bellos E, Abdelkareem MA, Alazaizeh DZ, Yousef BA. Enhancing the performance of automotive radiators using nanofluids. Renew Sustain Energy Rev. 2019;112:183–94.

    Article  CAS  Google Scholar 

  9. Said Z, Gupta M, Hegab H, Arora N, Khan AM, Jamil M, Bellos E. A comprehensive review on minimum quantity lubrication (MQL) in machining processes using nano-cutting fluids. Int J Adv Manuf Technol. 2019;105:2057–86.

    Article  Google Scholar 

  10. Kamyar A, Saidur R, Hasanuzzaman M. Application of computational fluid dynamics (CFD) for nanofluids. Int J Heat Mass Transf. 2012;55:4104–15.

    Article  CAS  Google Scholar 

  11. Patankar SV. Numerical heat transfer and fluid flow. New York: Hemisphere Publishing Corporation; 1980.

    Google Scholar 

  12. Hussein AM, Sharma KV, Bakar RA, Kadirgama K. The effect of nanofluid volume concentration on heat transfer and friction factor inside a horizontal tube. J Nanomater. 2013;1:1–12.

    Article  Google Scholar 

  13. Heris SZ, Etemad SG, Esfahany MN. Convective heat transfer of a Cu/water nanofluid flowing through a circular tube. Exp Heat Transfer. 2009;22:217–27.

    Article  CAS  Google Scholar 

  14. Azmi WH, Sharma K, Sarma P, Mamat R, Anuar S, Rao VD. Experimental determination of turbulent forced convection heat transfer and friction factor with SiO2 nanofluid. Exp Thermal Fluid Sci. 2013;51:103–11.

    Article  CAS  Google Scholar 

  15. Demir H. Numerical investigation on the single phase forced convection heat transfer characteristics of TiO2 nanofluids in a double-tube counter flow heat exchanger. Int Commun Heat Mass Transfer. 2011;38:218–28.

    Article  CAS  Google Scholar 

  16. Bianco V, Manca O, Nardini S. Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube. Int J Therm Sci. 2011;50:341–9.

    Article  CAS  Google Scholar 

  17. Sözen A, Öztürk A, Özalp M, Çiftçi E. Influences of alumina and fly ash nanofluid usage on the performance of recuperator including heat pipe bundle. Int J Environ Sci Technol. 2019;16:5095–100.

    Article  Google Scholar 

  18. Saha G, Paul MC. Numerical analysis of the heat transfer behaviour of water based Al2O3 and TiO2 nanofluids in a circular pipe under the turbulent flow condition. Int Commun Heat Mass Transfer. 2014;56:96–108.

    Article  CAS  Google Scholar 

  19. Kanti P, Sharma KV, Ramachandra CG, Panitapu B. Stability and thermophysical properties of fly ash nanofluid for heat transfer applications. Heat Transfer. 2020;48:1–14.

    Google Scholar 

  20. Kanti P, Sharma KV, Ramachandra CG, Minea AA. Effect of ball milling on the thermal conductivity and viscosity of Indian coal fly ash nanofluid. Heat Transfer. 2020;1:1–16.

    Google Scholar 

  21. Kanti P, Sharma KV, Ramachandra CG, Sesha-Talpa-Sai PHV. Experimental study on density and thermal conductivity properties of Indian coal fly ash water-based nanofluid. Int J Ambient Energy. 2020;48:4–27.

    Google Scholar 

  22. Patel HE, Sundararajan T, Das SK. An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. J Nanopart Res. 2010;12:1015–31.

    Article  CAS  Google Scholar 

  23. Maiga SEB, Palm SJ, Nguyen CT, Roy G, Galanis N. Heat transfer enhancement by using nanofluids in forced convection flows. Int J Heat Fluid Flow. 2005;26:530–46.

    Article  CAS  Google Scholar 

  24. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf Int J. 1998;11:151–70.

    Article  CAS  Google Scholar 

  25. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43:3701–7.

    Article  CAS  Google Scholar 

  26. Dittus F, Boelter L. Heat transfer in automobile radiators of the tubular type. Int Commun Heat Mass Transfer. 1985;12:3–22.

    Article  Google Scholar 

  27. Petukhov B. Heat transfer and friction in turbulent pipe flow with variable physical properties. Adv Heat Transfer. 1970;6:565–70.

    Google Scholar 

  28. Blasius H. Das aehnlichkeitsgesetz bei reibungsvorgängen in flüssigkeiten. Mitteilungen über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens. Springer;1913. pp. 1–41.

  29. Duangthongsuk W, Wongwises S. An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime. Int J Heat Mass Transf. 2010;53:334–44.

    Article  CAS  Google Scholar 

  30. STAR CCM+ 3.04 User Manual, Cd-adapco.

  31. Shih T, Liou W, Shabbir A, Yang Z, Zhu J. A new k-epsilon eddy viscosity model for high Reynolds number turbulent flows: Model development and validation. 1994.

  32. Tajnesaie M, Nodoushan EJ, Barati R, Moghadam MA. Performance comparison of four turbulence models for modeling of secondary flow cells in simple trapezoidal channels. ISH J Hydraul Eng. 2018;2:187–97.

    Google Scholar 

  33. Ahmad S, Abdullah S, Sopian K. Numerical and experimental analysis of the thermal performances of SiC/Water and Al2O3/Water nanofluid inside a circular tube with constant-increased-PR twisted tape. Energies. 2020;13(8):2095–3005.

    Article  CAS  Google Scholar 

  34. Sadri R, Mallah AR, Hosseini M, Ahmadi G, Kazi SN, Dabbagh A, Yaakup NA. CFD modeling of turbulent convection heat transfer of nanofluids containing green functionalized graphene nanoplatelets flowing in a horizontal tube: comparison with experimental data. J Mol Liq. 2018;269:152–9.

    Article  CAS  Google Scholar 

  35. Zainal S, Tan C, Sian CJ, Siang TJ. ANSYS simulation for Ag/HEG hybrid nanofluid in turbulent circular pipe. J Adv Res Appl Mech. 2016;23(1):20–35.

    Google Scholar 

  36. Zou Y, Zhao X, Chen Q. Comparison of STAR-CCM+ and ANSYS Fluent for simulating indoor airflows. Build Simul. 2018;11(1):165–74.

    Article  Google Scholar 

  37. Davis PL, Rinehimer AT, Uddin M. A comparison of RANS-based turbulence modeling for flow over a wall-mounted square cylinder conference: 20th annual conference of the CFD Society of Canada At: Canmore, Alberta, Canada.

  38. Xuan Y, Li Q. Investigation on convective heat transfer and flow features of nanofluids. J Heat transfer. 2003;125:151–5.

    Article  CAS  Google Scholar 

  39. Heyhat MM, Kowsary F. Effect of particle migration on flow and convective heat transfer of nanofluids flowing through a circular pipe. J Heat Trans ASME. 2010;132:062401–9.

    Article  Google Scholar 

  40. Mohammed H, Hasan HA, Wahid M. Heat transfer enhancement of nanofluids in a double pipe heat exchanger with louvered strip inserts. Int Commun Heat Mass Transfer. 2013;40:36–46.

    Article  CAS  Google Scholar 

  41. Taghizadeh-Tabari Z, Heris SZ, Moradi M, Kahani M. The study on application of TiO2/water nanofluid in plate heat exchanger of milk pasteurization industries. Renew Sustain Energy Rev. 2016;58:1318–26.

    Article  CAS  Google Scholar 

  42. Esfandiary M, Habibzadeh A, Sayehvand H. Numerical study of single phase/two-phase models for nanofluid forced convection and pressure drop in a turbulence pipe flow trans. Phenom Nano Micro Scales. 2016;4(1):11–8. https://doi.org/10.7508/tpnms.2016.01.002.

    Article  Google Scholar 

  43. Rashidi S, Javadi P, Esfahani JA. Second law of thermodynamics analysis for nanofluid turbulent flow inside a solar heater with the ribbed absorber plate. J Therm Anal Calorim. 2019;135:551–63.

    Article  CAS  Google Scholar 

  44. Albojamal A, Vafai K. Analysis of single phase, discrete and mixture models, in predicting nanofluid transport. Int J Heat Mass Transf. 2017;114:225–37.

    Article  CAS  Google Scholar 

  45. Shamsabadi H, Rashidi S, Esfahani JA. Entropy generation analysis for nanofluid flow inside a duct equipped with porous baffles. J Therm Anal Calorim. 2019;135:1009–19.

    Article  CAS  Google Scholar 

  46. Rashidi S, Akbarzadeh M, Karimi N, Masoodi R. Combined effects of nanofluid and transverse twisted-baffles on the flow structures, heat transfer and irreversibilities inside a square duct: a numerical study. Appl Therm Eng. 2018;130:135–48.

    Article  CAS  Google Scholar 

  47. Kanti P, Sharma KV, Ramachandra CG, Azmi WH. Experimental determination of thermophysical properties of Indonesian fly-ash nanofluid for heat transfer applications. Part Sci Technol. 2020;1:1–10. https://doi.org/10.1080/02726351.2020.1806971.

    Article  CAS  Google Scholar 

  48. Kanti P, Sharma KV, Ramachandra CG, Gupta M. Thermal performance of fly ash nanofluids at various inlet fluid temperatures: An experimental study. Int Commun Heat Mass Transfer. 2020;119:1–14. https://doi.org/10.1016/j.icheatmasstransfer.2020.10492614.

    Article  Google Scholar 

  49. Sundar LS, Sharma KV. Numerical analysis of heat transfer and friction factor in a circular tube with Al2O3 nanofluid. Int J Dyn Fluids. 2008;4(2):121–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Kanti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanti, P., Sharma, K.V., Said, Z. et al. Numerical study on the thermo-hydraulic performance analysis of fly ash nanofluid. J Therm Anal Calorim 147, 2101–2113 (2022). https://doi.org/10.1007/s10973-020-10533-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10533-0

Keywords

Navigation