Skip to main content
Log in

Mathematical modeling of thermal behavior of single iron ore pellet during heat hardening oxidation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, a one-dimensional generic model capable of being integrated with reactor scale models is proposed for a single pellet through solving the transient differential conservation equations. Predicted results comparison with the experimental data showed close agreement. In addition, the model was used to investigate the relevance of physical characteristics of pellet, reacting gas composition, diffusion factors, and prevailing regime. It was found that the pure magnetite pellet could achieve a temperature rise of about 245 K at oxygen concentration of 40 vol.%, whereas the maximum temperature difference inside the pellet was approximately 24 K. Moreover, increasing pellet size, the maximum attainable temperature reached a peak and then leveled out. Furthermore, by decreasing the pore diameter, the pellet size with peak temperature shifted to the smaller pellet sizes. Analyzing the numerical results also showed that for the small pellet sizes, shortening the diffusion path leads to the spreading of the reaction interface. The modeling methodology herein can be applied to any particulate processes and is not limited to the aforementioned case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Firth AR, Garden JF. Interactions between magnetite oxidation and flux calcination during iron ore pellet induration. Metall Mater Trans B. 2008;39:524–33.

    Article  Google Scholar 

  2. Monazam ER, Breault R, Siriwardane R, Richards G, Carpenter S. Kinetics of the reduction of hematite (\(\text{ Fe}_2\text{ O}_3\)) by methane (\(\text{ CH}_4\)) during chemical looping combustion: A global mechanism. Chem Eng J. 2013;232:478–87.

    Article  CAS  Google Scholar 

  3. Monazam ER, Breault R, Siriwardane R, Richards G. Kinetics of magnetite (\(\text{ Fe}_3\text{ O}_4\)) oxidation to hematite (\(\text{ Fe}_2\text{ O}_3\)) in air for chemical looping combustion. Ind Eng Chem Res. 2014;53:13320–8.

    Article  CAS  Google Scholar 

  4. Pahlevaninezhad M, Emami MD, Panjepour M. Identifying major zones of an iron ore sintering bed. Appl Math Model. 2016;40:8475–92.

    Article  Google Scholar 

  5. Papanastassiou D, Bitsianes G. Mechanisms and kinetics underlying the oxidation of magnetite in the induration of iron ore pellets. Metall Trans. 1973;4:487–96.

    Article  CAS  Google Scholar 

  6. Yang C, Zhu D, Jian P, Zhou B, Hu X. Oxidation and induration characteristics of pellets made from Western Australian ultrafine magnetite concentrates and its utilization strategy. J Iron Steel Res Int. 2016;23:924–32.

    Article  Google Scholar 

  7. Forsmo SPE, Hägglund A. Influence of the olivine additive fineness on the oxidation of magnetite pellets. Int J Miner Process. 2003;70:109–22.

    Article  CAS  Google Scholar 

  8. Forsmo SPE. Oxidation of magnetite concentrate powders during storage and drying. Int J Miner Process. 2005;75:135–44.

    Article  CAS  Google Scholar 

  9. Salmani M, Alamdari EK, Firoozi S. Isoconversional analysis of thermal dissociation kinetics of hematite in air and inert atmospheres. J Therm Anal Calorim. 2017;128:1385–90.

    Article  CAS  Google Scholar 

  10. Forsmo SPE, Forsmo S-E, Samskog P-O, Björkman BMT. Mechanisms in oxidation and sintering of magnetite iron ore green pellets. Powder Technol. 2008;183:247–59.

    Article  CAS  Google Scholar 

  11. Tang M, Cho HJ, Pistorius PCh. Early gaseous oxygen enrichment to enhance magnetite pellet oxidation. Metall Mater Trans B. 2014;45:1304–14.

    Article  CAS  Google Scholar 

  12. Nouri SMM, Ale Ebrahim H, Jamshidi E. Simulation of direct reduction reactor by the grain model. Chem Eng J. 2011;166:704–9.

    Article  CAS  Google Scholar 

  13. Ale Ebrahim H. Application of random-pore model to \(\text{ SO}_2\) capture by lime. Ind Eng Chem Res. 2009;49:117–22.

    Article  Google Scholar 

  14. Bahrami R, Ale Ebrahim H, Halladj R. Comparison of random pore model, modified grain model, and volume reaction model predictions with experimental results of \(\text{ SO}_2\) removal reaction by CuO. J Ind Eng Chem. 2015;30:372–8.

    Article  CAS  Google Scholar 

  15. Zare Ghadi A, Valipour MS, Biglari M. Numerical analysis of complicated heat and mass transfer inside a wustite pellet during reducing to sponge Iron by H 2 and CO Gaseous Mixture. J Iron Steel Res. Int. 2016;23:1142–50.

    Article  Google Scholar 

  16. ZareGhadi A, Valipour MS, Vahedi SM, Sohn HY. A review on the modeling of gaseous reduction of iron oxide pellets. Steel Res Int. 2020;91:1900270–86.

    Article  Google Scholar 

  17. Melchiori T, Canu P. Improving the quantitative description of reacting porous solids: critical analysis of the shrinking core model by comparison to the generalized grain model. Ind Eng Chem Res. 2013;53:8980–95.

    Article  Google Scholar 

  18. Szekely J, Evans J, Sohn HY. Gas–solid reactions. 1st ed. Michigan: Academic Press; 1976.

    Google Scholar 

  19. Valipour MS, Saboohi Y. Modeling of multiple noncatalytic gas–solid reactions in a moving bed of porous pellets based on finite volume method. Heat Mass Transf. 2007;43:881–94.

    Article  CAS  Google Scholar 

  20. Noorman S, Gallucci F, van Sint Annaland M, Kuipers JAM. A theoretical investigation of CLC in packed beds. Part 1: Particle model. Chem Eng J. 2011;167:297–307.

    Article  CAS  Google Scholar 

  21. Bahrami R, Ale Ebrahim H, Halladj R, AleEbrahim MA. Applying the random pore model in a packed bed reactor for the regenerative \(\text{ SO}_2\) removal reaction by CuO. Ind Eng Chem Res. 2014;53:16285–92.

    Article  CAS  Google Scholar 

  22. Valipour MS. Mathematical modeling of a non-catalytic gas–solid reaction: hematite pellet reduction with syngas. Scientia Iranica. 2009;16(2):108.

    CAS  Google Scholar 

  23. Valipour MS, Saboohi Y. Numerical investigation of nonisothermal reduction of hematite using Syngas: the shaft scale study. Model Simul Mater SC. 2007;15(5):487.

    Article  CAS  Google Scholar 

  24. Wen CY. Noncatalytic heterogeneous solid–fluid reaction models. Ind Eng Chem. 1968;60:34–54.

    Article  CAS  Google Scholar 

  25. Valipour MS, Hashemi MY, Saboohi Y. Mathematical modeling of the reaction in an iron ore pellet using a mixture of hydrogen, water vapor, carbon monoxide and carbon dioxide: an isothermal study. Adv Powder Technol. 2006;17:277–95.

    Article  CAS  Google Scholar 

  26. Man YH, Byeong RC. A numerical study on the combustion of a single carbon particle entrained in a steady flow. Combust Flame. 1994;97:1–16.

    Article  Google Scholar 

  27. Nield DA, Bejan A. Convection in porous media. 3rd ed. New York: Springer; 2006.

    Google Scholar 

  28. Young RW, Cross M, Gibson RD. Mathematical model of grate-Kiln-cooler process used for induration of iron ore pellets. Ironmak Steelmak. 1979;6:1–13.

    CAS  Google Scholar 

  29. Bird RB, Warren SE, Lightfoot EN. Transport phenomena. 2nd ed. New York: Wiley; 2002.

    Google Scholar 

  30. Peters B. Thermal conversion of solid fuels (Developments in heat transfer)). New York: WIT Press; 2002.

    Google Scholar 

  31. Monsen BE, Olsen SE, Kolbeinsen L. Kinetics of magnetite oxidation. Scand J Metall. 1994;23:74–80.

    CAS  Google Scholar 

  32. Peters B, Bruch Ch. A flexible and stable numerical method for simulating the thermal decomposition of wood particles. Chemosphere. 2001;42:481–90.

    Article  CAS  Google Scholar 

  33. Peters B, Hoffmann F, Senk D, Babich A. Experimental and numerical investigation into iron ore reduction in packed beds. Chem Eng Sci. 2016;140:189–200.

    Article  CAS  Google Scholar 

  34. Gronli M, A theoretical and experimental study of the thermal degradation of biomass. Phd Thesis. NUST; 1998.

  35. Peters B. Validation of a numerical approach to model pyrolysis of biomass and assessment of kinetic data. Fuel. 2011;90:2301–14.

    Article  CAS  Google Scholar 

  36. Khoshandam B, Kumar RV, Valipour MS, Darzi HR. Modelling of non-catalytic gas–solid reactions-multicomponent non-equimolar counter diffusion of gaseous phase. Trans Inst Min Metall C. 2009;118:85–97.

    CAS  Google Scholar 

  37. Hilton JE, Cleary PW. Comparison of non-cohesive resolved and coarse grain DEM models for gas flow through particle beds. Appl Math Model. 2014;38:4197–214.

    Article  Google Scholar 

  38. Hou Q, Li J, Yu A. CFD-DEM study of heat transfer in the reduction shaft of corex. Steel Res Int. 2015;86:626–35.

    Article  CAS  Google Scholar 

  39. Peters B, Bruch Ch. Evaluation of ODE-solvers for the prediction of thermal conversion of solid fuel particles, 16th IMACS World Congress, Lausanne. pp. 21–25. 2000

  40. Forsmo S, Influence of green pellet properties on pelletizing of magnetite iron ore. PhD Thesis. Luleå University of Technology, 2007.

  41. Kumar TKS, Viswanathan NN, Ahmed HM, Andersson Ch, Björkman B. Estimation of sintering kinetics of magnetite pellet using optical dilatometer. Metall Mater Trans B. 2016;47:309–19.

    Article  Google Scholar 

  42. Ljung AL, Modeling drying of iron ore pellets. PhD Thesis. Luleå University of Technology, 2010.

  43. Coetsee T, Pistorius PC, De Villiers EE. Rate-determining steps for reduction in magnetite-coal pellets. Miner Eng. 2002;15:919–29.

    Article  CAS  Google Scholar 

  44. Zare Ghadi A, Valipour MS, Biglari M. Mathematical modelling of wustite pellet reduction: grain model in comparison with USCM. Ironmak Steelmak. 2016;43:418–25.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Golgohar Iron Ore and Steel Company for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Alamdari.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amani, H., Alamdari, E.K., Ale Ebrahim, H. et al. Mathematical modeling of thermal behavior of single iron ore pellet during heat hardening oxidation. J Therm Anal Calorim 147, 2293–2303 (2022). https://doi.org/10.1007/s10973-020-10532-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10532-1

Keywords

Navigation