Skip to main content
Log in

Unsteady three-dimensional MHD flow and heat transfer in porous medium suspended with both microorganisms and nanoparticles due to rotating disks

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present study, the silent characteristics of magnetized mixed convection flow in porous medium suspended with both microorganisms and nanoparticles induced by two expanded or contracted disks are investigated. The Buongiorno’s model, in which the Brownian diffusion and thermophoresis are taken as dominant factors, is introduced to describe behaviors of the nanofluid. Multiple slip boundary conditions are also included into this problem. The nonlinear system is converted into five fully coupled nonlinear ordinary differential equations via suitable scaling transformations. The homotopy-based algorithm BVPh2.0 is employed to give their solutions. Physical interpretation is made through analyzing the graphs of different constraints for profiles of velocity, temperature, nanoparticle volume concentration and density of motile organism. Furthermore, we extend this model to seek the physical behaviors of heat transfer and the wall motile microorganism fluxes. Significant findings are presented, including that the wall expansion ratio and the magnetic parameter impose contrary effects on microorganism profiles, the Prandtl number and the radiation parameter play opposite roles on heat transfer rate, and the Brownian motion and the thermophoresis exhibit totally different influence on microorganism flux rate. It is expected that this study is helpful to understand heat transfer mechanism in multiple physical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Von Karman T. About laminar and turbulent flow. ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik. 1921;1:233–52.

    Google Scholar 

  2. Schlichting H, Truckenbrodt E. The flow around a rotating disc in a uniform stream. J Aeronaut Sci. 1951;18:639–40.

    Google Scholar 

  3. Thiriot HK. Über die laminare Anlaufströmung einer Flüssigkeit über einem rotierenden Boden bei plötzlicher Änderung des Drehungszustandes. ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik. 1940;20:1–13.

    Google Scholar 

  4. Millspas K, Pohlhausen K. Heat transfer by laminar flow from a rotating disk. J Aeronaut Sci 19, 1952;120C126. 21.

  5. Sparrow EM, Cess RD. Magnetohydrodynamic flow and heat transfer about a rotating disk. J Appl Mech Trans ASME. 1962;29:181–7.

    CAS  Google Scholar 

  6. Batchelor GK. Note on a class of solutions of the Navier–Stokes equations representing steady rationally-symmetric flow. Q J Mech Appl Mech. 1951;4(1):29–41.

    Google Scholar 

  7. Greenspan HP, Howard LN. On a time-dependent motion of a rotating fluid. J Fluid Mech. 1963;17:385–404.

    Google Scholar 

  8. Colli AN, Bisang JM. Time-dependent mass-transfer behaviour under laminar and turbulent flow conditions in rotating electrodes: a CFD study with analytical and experimental validation. Int J Heat Mass Transf. 2019;137:835–46.

    Google Scholar 

  9. Turkyilmazoglu M. Flow and heat simultaneously induced by two stretchable rotating disks. Phys Fluids 2016;28, Paper No. 043601.

  10. Sirivat A, Rajagopal KR, Szeri AZ. An experimental investigation of the flow of non-Newtonian fluids between rotating disks. J Fluid Mech. 1988;186:243–56.

    CAS  Google Scholar 

  11. Rehman KU, Malik MY, Khan WA, Khan I, Alharbi SO. Numerical solution of non-Newtonian fluid flow due to rotatory rigid disk. Symmetry. 2019;11:699. https://doi.org/10.3390/sym11050699.

    Article  CAS  Google Scholar 

  12. Hayat T, Nawaz M, Hendi AA, Asghar S. MHD squeezing flow of a micropolar fluid between parallel disks. J Fluids Eng Trans ASME 2011;133, Paper No. 111206.

  13. Ali K, Ahmad S, Ashraf M. Numerical simulation of flow and heat transfer in hydromagnetic micropolar fluid between two stretchable disks with viscous dissipation effects. J Theor Appl Mech. 2016;54:633–43.

    Google Scholar 

  14. Huilgol RR, Keller HB. Flow of viscoelastic fluids between rotating disks: part I. J Nonnewton Fluid Mech. 1985;18:101–10.

    Google Scholar 

  15. Itoh M, Suzuki M, Moroi T. Swirling flow of a viscoelastic fluid in a cylindrical casing. J Fluids Eng. 2006;128:88–94.

    CAS  Google Scholar 

  16. Pourmehran O, Sarafraz MM, Rahimi-Gorji M, Ganj DD. Rheological behaviour of various metal-based nano-fluids between rotating discs: a new insight. J Taiwan Inst Chem Eng. 2018;88:37–48.

    CAS  Google Scholar 

  17. Xu H. Modelling unsteady mixed convection of a nanofluid suspended with multiple kinds of nanoparticles between two rotating disks by generalized hybrid model. Int Commun Heat and Mass Transf 2019;108, Paper No. 104275.

  18. Li JJ, Xu H, Raees A, Zhao QK. Unsteady mixed bioconvection flow of a nanofluid between two contracting or expanding rotating discs. Zeitschrift für Naturforschung A A J Phys Sci (ZNA). 2016;70:261–72.

    Google Scholar 

  19. Darcy H. Les fontsines publiques de la ville de Dijon. Paris: Victor Dalmont; 1856.

    Google Scholar 

  20. Beavers GS, Joseph DD. Boundary conditions at a naturally permeable wall. J Fluid Mech. 1967;30:197–207.

    Google Scholar 

  21. Givler RC, Altobelli SA. A determination of the effective viscosity for the Brinkman–Forchheimer flow model. J Fluid Mech. 1994;258:355–70.

    CAS  Google Scholar 

  22. Vafai K, Kim SJ. On the limitations of the Brinkman–Forchheimer-extended Darcy equation. Int J Heat Fluid Flow. 1995;16:11–5.

    Google Scholar 

  23. Ochoa-Tapia JA, Whitaker S. Momentum transfer at the boundary between a porous medium and a homogeneous fluid - I. Theoretical development. Int J Heat Mass Transf. 1995;38:2635–46.

    CAS  Google Scholar 

  24. Kuznetzov AV. Analytical investigation of the fluid flow in the interface region between a porous medium and a clear fluid in channels partially filled with a porous medium. Appl Sci Res. 1996;56:53–67.

    Google Scholar 

  25. Shehzad SA, Hayat T, Alsaedi A. Three-dimensional MHD flow of Casson Fluid in porous medium with heat generation. J Appl Fluid Mech. 2016;9:215–23.

    Google Scholar 

  26. Falade JA, Ukaegbu JC, Egere AC, Adesanya SO. MHD oscillatory flow through a porous channel saturated with porous medium. Alexandr Eng J. 2017;56:147–52.

    Google Scholar 

  27. Dash RK, Mehta KN, Jayaraman G. Casson fluid flow in a pipe filled with a homogeneous porous medium. Int J Eng Sci. 1996;34:1145–56.

    CAS  Google Scholar 

  28. Sharma MK, Manjeet C, Makinde OD. Flow and heat transfer in nanofluid flow through a cylinder filled with foam porous medium under radial injection. Defect Diffus Forum. 2018;387:166–81.

    Google Scholar 

  29. Rauf A, Abbas Z, Shehzad SA. Utilization of Maxwell–Cattaneo law for MHD swirling flow through oscillatory disk subject to porous medium. Appl Math Mech. 2019;40:837–50.

    Google Scholar 

  30. Hayat T, Shafiq A, Nawaz M, Alsaedi A. MHD axisymmetric flow of third grade fluid between porous disks with heat transfer. Appl Math Mech. 2012;33:749–64.

    Google Scholar 

  31. Krishna MV, Chamkha AJ. Hall effects on MHD squeezing flow of a water-based nanofluid between two parallel disks. J Porous Media. 2019;22:209–23.

    Google Scholar 

  32. Khan NS, Shah Q, Bhaumik A, Kumam P, Thounthong P, Amiri I. Entropy generation in bioconvection nanofluid flow between two stretchable rotating disks. Sci Rep. 2020;10:1–26.

    Google Scholar 

  33. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. In: The proceedings of the 1995 ASME international mechanical engineering congress and exposition, San Francisco, USA, ASME, FED 231/MD 1995;66:99–105.

  34. Das SK, Choi SUS, Yu W, Pradeep T. Nanofluids: science and technology. New Jersey: Wiley Interscience; 2007.

    Google Scholar 

  35. Khanafer K, Vafai K. A critical synthesis of thermophysical characteristics of nanofluids. Int J Heat Mass Transf. 2011;54:4410–28.

    CAS  Google Scholar 

  36. Kakaç S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf. 2009;52:3187–96.

    Google Scholar 

  37. Buongiorno J. Convective transport in nanofluids. J Heat Transf Trans ASME. 2006;128:240–50.

    Google Scholar 

  38. Nield DA, Kuznetsov AV. The Cheng–Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid. Int J Heat Mass Transf. 2009;52:5792–5.

    CAS  Google Scholar 

  39. Bachok N, Ishak A, Pop I. Boundary-layer flow of nanofluids over a moving surface in a flowing fluid. Int J Therm Sci. 2010;49:1663–8.

    CAS  Google Scholar 

  40. Lin Y, Zheng L, Zhang X, Ma L, Chen G. MHD pseudo-plastic nanofluid unsteady flow and heat transfer in a finite thin film over stretching surface with internal heat generation. Int J Heat Mass Transf. 2015;84:903–11.

    CAS  Google Scholar 

  41. Turkyilmazoglu M. Analytical solutions of single and multiphase models for the condensation of nanofluid film flow and heat transfer. Eur J Mech B/Fluids. 2015;53:272–7.

    Google Scholar 

  42. Aziz RC, Hashim I, Abbasbandy S. Flow and heat transfer in a nanofluid thin film over an unsteady stretching sheet. J Sains Malaysian. 2018;47:1599–605.

    CAS  Google Scholar 

  43. Roşca NC, Roşca AV, Pop I, Merkin JH. Nanofluid flow by a permeable stretching/shrinking cylinder. Heat Mass Transf. 2019;. https://doi.org/10.1007/s00231-019-02730.

    Article  Google Scholar 

  44. Roy NC, Rahman T, Parvin S. Boundary-layer separations of mixed convection flow past an isothermal circular cylinder. Int J App Comput Math 2019;5. Paper No. 48.

  45. Yu Q, Xu H, Liao SJ. Analysis of mixed convection flow in an inclined lid-driven enclosure with Buongiorno’s nanofluid model. Int J Heat Mass Transf. 2018;126:221–36.

    CAS  Google Scholar 

  46. Sheikholeslami M, Rokni HB. Magnetic nanofluid flow and convective heat transfer in a porous cavity considering Brownian motion effects. Phys Fluids 2018;30, Paper No. 012003.

  47. Khan ZH, Khan WA, Hamid M. Non-Newtonian fluid flow around a Y-shaped fin embedded in a square cavity. J Therm Anal Calorim. 2020;1–13.

  48. Turkyilmazoglu M. Buongiorno model in a nanofluid filled asymmetric channel fulfilling zero net particle flux at the walls. Int J Heat Mass Transf. 2018;126:974–9.

    CAS  Google Scholar 

  49. Xu H, Haung H, Xu XH, Sun Q. Modeling heat transfer of nanofluid flow in microchannels with electrokinetic and slippery effects using Buongiorno’s model. Int J Numer Methods Heat Fluid Flow. 2019;29:2566–87.

    Google Scholar 

  50. Turkyilmazoglu M. Fully developed slip flow in concentric annuli via single and dual phase nanofluids models. Comput Methods Prog Med 2019;179, Paper no. 104997.

  51. Shafee A, Sheikholeslami M, Jafaryar M, Selimefendigil F, Bhatti MM, Babazadeh H. Numerical modeling of turbulent behavior of nanomaterial exergy loss and flow through a circular channel. J Therm Anal Calorim. 2020;1–9.

  52. Shafee A, Shahraki MS, Taleghani AH, Nam ND, Tlili I. Analysis of nanomaterial flow among two circular tubes in the presence of magnetic force. J Therm Anal Calorim. 2020;1–10.

  53. Wakif A, Chamkha A, Thumma T, Animasaun IL, Sehaqui R. Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized Buongiorno’s nanofluid model. J Therm Anal Calorim. 2020;1–20.

  54. Salim WS, Ajeel RK, Hasnan K. Heat transfer enhancement in semicircle corrugated channel: effect of geometrical parameters and nanofluid. J Adv Res Fluid Mech Therm Sci. 2019;53(1):82–94.

    Google Scholar 

  55. Ajeel RK, Salim WI, Hasnan K. Impacts of corrugation profiles on the flow and heat transfer characteristics in trapezoidal corrugated channel using nanofluids. J Adv Res Fluid Mech Therm Sci. 2018;49(2):170–9.

    Google Scholar 

  56. Parashar N, Aslfattahi N, Yahya SM. An artificial neural network approach for the prediction of dynamic viscosity of MXene-palm oil nanofluid using experimental data. J Therm Anal Calorim. 2020;. https://doi.org/10.1007/s10973-020-09638-3.

    Article  Google Scholar 

  57. Aslfattahia Navid, Samylingam L, Abdelrazik AS, Arifutzzaman A, Saidur R. MXene based new class of silicone oil nanofluids for the performance improvement of concentrated photovoltaic thermal collector. Sol Energy Mater Sol Cells. 2020;211:110526.

    Google Scholar 

  58. Aslfattahi Navid, Saidur R, Sabri Mohd Faizul Mohd, Arifutzzaman A. Experimental investigation of thermal stability and enthalpy of eutectic alkali metal solar salt dispersed witH MGO nanoparticles. Int J Technol 2019. https://doi.org/10.14716/ijtech.v10i6.3568.

  59. Abdelrazik AS, Tan KH, Alfattahi Navid, Arifutzzaman A, Saidurb R, Al-Sulaimanae FA. Optical, stability and energy performance of water-based MXene nanofluids in hybrid PV/thermal solar systems. Sol Energy. 2020;204:32–47.

    CAS  Google Scholar 

  60. Jakati SV, Raju BT, Nargund AL, Sathyanarayana SB. Study of Maxwell nanofluid flow over a stretching sheet with non-uniform heat source/sink with external magnetic field. J Adv Res Fluid Mech Therm Sci. 2019;55:218–32.

    Google Scholar 

  61. Vandrangi SK, Emani S, Sharma KV, Velidi G. Friction factor analysis of SiO2 and Al2O3 nanofluids dispersed in 60 EGW and 40 EGW base fluids. J Adv Res Fluid Mech Therm Sci. 2018;51(1):61–70.

    Google Scholar 

  62. Pedley TJ, Kessler JO. Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu Rev Fluid Mech. 1992;24:313–58.

    Google Scholar 

  63. Kuznetsov AV, Avramenko AA. Effect of small particles on the stability of bioconvection in a suspension of gyrotactic microorganisms in a layer of finite depth. Int Commun Heat Mass Transf. 2004;31:1–10.

    Google Scholar 

  64. Kuznetsov AV. Non-oscillatory and oscillatory nanofluid bio-thermal convection in a horizontal layer of finite depth. Eur J Mech B Fluids. 2011;30:156–65.

    Google Scholar 

  65. Tham L, Nazar R, Pop I. Mixed convection flow over a solid sphere embedded in a porous medium filled by a nanofluid containing gyrotactic microorganisms. Int J Heat Mass Transf. 2013;62:647–60.

    Google Scholar 

  66. Xu H. Lie group analysis of a nanofluid bioconvection flow past a vertical flat surface with an outer power-law stream. J Heat Transf Trans ASME 2015;137, Paper No. 041101.

  67. Waqas M, Hayat T, Shehzad SA, Alsaedi A. Transport of magnetohydrodynamic nanomaterial in a stratified medium considering gyrotactic microorganisms. Phys B Phys Condensed Matter. 2018;529:33–40.

    CAS  Google Scholar 

  68. Latiff NA, Uddin MJ, Ismail AIM. Stefan blowing effect on bioconvective flow of nanofluid over a solid rotating stretchable disk. Propul Power Res. 2016;5:267–78.

    Google Scholar 

  69. Uddin MJ, Kabir MN, Beg OA. Computational investigation of Stefan blowing and multiple-slip effects on buoyancy-driven bioconvection nanofluid flow with microorganism. Int J Heat Mass Transf. 2016;95:116–30.

    Google Scholar 

  70. Zhao YL, Liao SJ. Chaper: 9 HAM-based mathematica package BVPh2.0 for nonlinear boundary value problems. Advances in the Homotopy Analysis Method, 361–417, World Scientific. China: Shanghai; 2014.

  71. Hayat T, Ashraf MB, Alsulami HH, Alhuthali MS. Three-dimensional mixed convection flow of viscoelastic fluid with thermal radiation and convective conditions. PLoS ONE 2014;9, Paper No. e90038.

  72. Wang CY. Stagnation slip flow and heat transfer on a moving plate. Chem Eng Sci. 2006;61:7668–72.

    CAS  Google Scholar 

  73. Shu JJ, Teo JBM, Chan WK. Fluid velocity slip and temperature jump at a solid surface. Appl Mech Rev 2017;69, Paper No. 2017.

  74. Dauenhauer EC, Majdalani J. Exact self-similarity solution of the Navier–Stokes equations for a porous channel with orthogonally moving walls. Phys Fluids 2003;15, Paper No. 1485.

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (Grant No. 11872241).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, T., Xu, H., Raees, A. et al. Unsteady three-dimensional MHD flow and heat transfer in porous medium suspended with both microorganisms and nanoparticles due to rotating disks. J Therm Anal Calorim 147, 1607–1619 (2022). https://doi.org/10.1007/s10973-020-10528-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10528-x

Keywords

Navigation