Skip to main content
Log in

Assessment of a solar-driven cogeneration system for electricity and desalination

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The goal of the present paper is the investigation of a solar desalination system with an organic Rankine cycle system for power and freshwater production. This system is an environmentally friendly technology that is able to utilize solar energy properly in a novel cogeneration application. A parabolic trough concentrator with a smooth and corrugated receiver was employed as the heat source of the desalination system. A humidifier–dehumidifier desalination technology was used for producing freshwater. The electricity is produced by an organic Rankine cycle which is fed both by the solar field and by the hot brine. The present analysis is performed by using a detailed numerical model which is validated by experimental literature data. Based on the final results, the corrugated tube has a maximum performance of 66.59%, and it is more efficient than the smooth tube with 63.11%. The average freshwater productions were estimated equal to 13.09 kg hr−1 and 12.71 kg hr−1 for the corrugated and smooth tubes, respectively. The maximum net work production is found at 7.57 kW with R113, while the less efficient working fluid is R134a. It was found that the application of the developed desalination system leads to the production of high amounts of fresh water and a significant reduction of the equivalent CO2 emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

A :

Area, m2

c 2 :

Constant used in the linear equation

c p :

Specific heat capacity, J kg−1K−1

d :

Receiver tube diameter, m

f r :

Friction factor

\(\dot{F}\) :

View factor

h :

Convection coefficient, W m−2K−1

\(h^{\prime}\) :

Internal heat transfer coefficient, Wm−2K−1

\(k\) :

Heat transfer coefficient

m 2 :

Slope of linear equation

\(\dot{m}\) :

Mass flow rate, kg s−1

Nu:

Nusselt number

Pr:

Prandtl number

\(\dot{Q}_{\text{net}}\) :

Net heat transfer rate, W

\(\dot{Q}^{*}\) :

Rate of available solar heat at the receiver cavity, W

\(\dot{Q}_{\text{loss}}\) :

Loss rate of heat from cavity receiver, W

R :

Thermal resistance, K/W

Re:

Reynolds number

T :

Temperature, K

T :

Ambient temperature, K

t :

Time, s

A,a :

Area, m2

b :

Breadth, m

a humid :

Surface area of humidifier packing per unit volume, m2 m−3

C f :

Conversion factor of the thermal power plant

c p :

Specific heat capacity, J kg−1 K−1

D :

Diameter, m

F :

Area ratio

F′ :

Flat plate collector efficiency

F R :

Flow rate factor

G :

Dry air mass flow rate, kg s−1

h :

Heat transfer coefficient, W m−2K−1

h fg :

Latent heat enthalpy of water vaporization, J kg−1

h p1 :

Penalty factor due to tedlar through glass, solar cell and EVA

h p2 :

Penalty factor due to the interface between tedlar and the working fluid

h T :

Heat transfer coefficient from back surface to air through tedlar, W m−2K−1

H :

Enthalpy, kJ kg−1

I(t):

Incident solar irradiation, W m−2

K :

Thermal conductivity, W m−1K−1

K humid :

Heat transfer coefficient, kg m−2 s−1

\(\dot{L}\) :

Length, m

L :

Sea water flow rate, kg s−1

m :

Mass flow rate, kg s−1

m fw :

Freshwater production

Nu:

Nusselt number, –

Pr:

Prandtl number,–

Q u :

Rate of useful energy transfer

Re:

Reynolds number,–

T :

Temperature, K

T a :

Ambient temperature, K

U :

Global heat transfer coefficient, Wm−2K−1

U b :

An overall heat transfer coefficient from water to ambient, W m−2 K−1

U L :

Overall heat transfer coefficient from solar cell to ambient through the back insulation, W/m2 K

U t :

Overall heat transfer coefficient from solar cell to ambient through glass cover, W m−2K−1

U T :

Conductive heat transfer coefficient from solar cell to water through tedlar, W m−2K−1

U tT :

Overall heat transfer coefficient from glass to tedlar through solar cell, W m−2K−1

U tw :

Overall heat transfer coefficient from glass to water through solar cell and tedlar, W m−2K−1

W :

Tube spacing, m

V :

Volume, m3

α :

Absorptivity

β :

Packing factor

ε :

Emissivity

η:

Efficiency

τ :

Transmittance

σ:

Stefan–Boltzmann constant, W m−2K−4

ω :

Specific humidity

0:

Glass to ambient

a:

Air

amb:

Ambient

Ave:

Average

bs:

Back surface of tedlar

cond:

Due to conduction, Condenser

conv:

Due to convection

c:

Solar cell

eff:

Effective

f:

Fluid

f out :

Outgoing fluid

fw:

Fresh water

G:

Glass

humd:

Humidifier

in:

Inlet

inlet, in:

At the inlet

ins, i:

Insulation

loss:

Energetic loss

n:

Tube section number

net:

Net

outer, out:

Outlet

rad:

Due to radiation

rec:

Receiver

r:

Reference

s:

Inner tube surface

T:

Tedlar

th:

Thermal

total:

Total

unit:

Unit of desalination

w:

Water

zero:

Initial condition in the inlet

∞:

Ambient

GOR:

Gain output ratio

HDD:

Humidification–dehumidification desalination

PV:

Photovoltaic

PVT:

Photovoltaic-thermal

References

  1. Shahzad MW, Burhan M, Son HS, Oh SJ, Ng KC. Desalination processes evaluation at common platform: a universal performance ratio (UPR) method. Appl Therm Eng. 2018;134:62–7.

    Article  Google Scholar 

  2. Khoobbakht G, Akram A, Karimi M, Najafi G. Exergy and energy analysis of combustion of blended levels of biodiesel, ethanol and diesel fuel in a DI diesel engine. Appl Therm Eng. 2016;99:720–9.

    Article  CAS  Google Scholar 

  3. Hoseini S, Najafi G, Ghobadian B, Mamat R, Ebadi M, Yusaf T. Novel environmentally friendly fuel: the effects of nanographene oxide additives on the performance and emission characteristics of diesel engines fuelled with Ailanthus altissima biodiesel. Renew Energy. 2018;125:283–94.

    Article  CAS  Google Scholar 

  4. Ghanbari M, Najafi G, Ghobadian B, Yusaf T, Carlucci A, Kiani MKD. Performance and emission characteristics of a CI engine using nano particles additives in biodiesel-diesel blends and modeling with GP approach. Fuel. 2017;202:699–716.

    Article  CAS  Google Scholar 

  5. Fouda A, Nada S, Elattar H, Rubaiee S, Al-Zahrani A. Performance analysis of proposed solar HDH water desalination systems for hot and humid climate cities. Appl Therm Eng. 2018;144:81–95.

    Article  Google Scholar 

  6. Elashmawy M. An experimental investigation of a parabolic concentrator solar tracking system integrated with a tubular solar still. Desalination. 2017;411:1–8.

    Article  CAS  Google Scholar 

  7. Korres D, Bellos E, Tzivanidis C. Investigation of a nanofluid-based compound parabolic trough solar collector under laminar flow conditions. Appl Therm Eng. 2019;149:366–76.

    Article  CAS  Google Scholar 

  8. Chen Q, Yuan Z, Guo Z, Zhao Y. Practical performance of a small PTC solar heating system in winter. Sol Energy. 2019;179:119–27.

    Article  Google Scholar 

  9. Nafey A, Sharaf M. Combined solar organic Rankine cycle with reverse osmosis desalination process: energy, exergy, and cost evaluations. Renew Energy. 2010;35:2571–80.

    Article  CAS  Google Scholar 

  10. Mohammed MK, Awad OI, Rahman M, Najafi G, Basrawi F, Abd Alla AN, Mamat R. The optimum performance of the combined cycle power plant: a comprehensive review. Renew Sustain Energy Rev. 2017;79:459–74.

    Article  Google Scholar 

  11. Acar MS, Arslan O. Energy and exergy analysis of solar energy-integrated, geothermal energy-powered Organic Rankine Cycle. J Therm Anal Calorim. 2019;137:659–66.

    Article  Google Scholar 

  12. Arslan O, Ozgur M, Kose R. Electricity generation ability of the Simav geothermal field: a technoeconomic approach. Energy Sour Part A Recovery Util Environ Eff. 2012;34:1130–44.

    Article  Google Scholar 

  13. Liu C, Gao T. Off-design performance analysis of basic ORC, ORC using zeotropic mixtures and composition-adjustable ORC under optimal control strategy. Energy. 2019;171:95–108.

    Article  CAS  Google Scholar 

  14. Bellos E, Tzivanidis C. Investigation of a hybrid ORC driven by waste heat and solar energy. Energy Convers Manag. 2018;156:427–39.

    Article  CAS  Google Scholar 

  15. Aichouba A, Merzouk M, Valenzuela L, Zarza E, Kasbadji-Merzouk N. Influence of the displacement of solar receiver tubes on the performance of a parabolic-trough collector. Energy. 2018;159:472–81.

    Article  Google Scholar 

  16. Mansour K, Boudries R, Dizene R. Optical, 2D thermal modeling and exergy analysis applied for performance prediction of a solar PTC. Sol Energy. 2018;174:1169–84.

    Article  Google Scholar 

  17. Zhang L, Fan L, Hua M, Zhu Z, Wu Y, Yu Z, Hu Y, Fan J, Cen K. An indoor experimental investigation of the thermal performance of a TPLT-based natural circulation steam generator as applied to PTC systems. Appl Therm Eng. 2014;62:330–40.

    Article  Google Scholar 

  18. Agagna B, Smaili A, Falcoz Q, Behar O. Experimental and numerical study of parabolic trough solar collector of MicroSol-R tests platform. Exp Thermal Fluid Sci. 2018;98:251–266.

    Article  Google Scholar 

  19. Song J, Tong K, Li L, Luo G, Yang L, Zhao J. A tool for fast flux distribution calculation of parabolic trough solar concentrators. Sol Energy. 2018;173:291–303.

    Article  Google Scholar 

  20. Houcine A, Maatallah T, El Alimi S, Nasrallah SB. Optical modeling and investigation of sun tracking parabolic trough solar collector basing on Ray Tracing 3Dimensions-4Rays. Sustain cities Soc. 2017;35:786–98.

    Article  Google Scholar 

  21. Kumaresan G, Sudhakar P, Santosh R, Velraj R. Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors. Renew Sustain Energy Rev. 2017;77:1363–74.

    Article  Google Scholar 

  22. Srivastava S, Reddy K. Simulation studies of thermal and electrical performance of solar linear parabolic trough concentrating photovoltaic system. Sol Energy. 2017;149:195–213.

    Article  CAS  Google Scholar 

  23. Hoseinzadeh H, Kasaeian A, Shafii MB. Geometric optimization of parabolic trough solar collector based on the local concentration ratio using the Monte Carlo method. Energy Convers Manag. 2018;175:278–87.

    Article  Google Scholar 

  24. Mansouri MT, Amidpour M, Ponce-Ortega JM. Optimal integration of organic Rankine cycle and desalination systems with industrial processes: energy–water–environment nexus. Appl Therm Eng. 2019;158:113740.

    Article  Google Scholar 

  25. Igobo O, Davies P. Isothermal Organic Rankine Cycle (ORC) driving Reverse Osmosis (RO) desalination: experimental investigation and case study using R245fa working fluid. Appl Therm Eng. 2018;136:740–6.

    Article  Google Scholar 

  26. Seyednezhad M, Sheikholeslami M, Ali JA, Shafee A, Nguyen TK. Nanoparticles for water desalination in solar heat exchanger. J Therm Anal Calorim. 2020;139:1619–36.

    Article  CAS  Google Scholar 

  27. Omara AA, Abuelnuor AA, Mohammed HA, Khiadani M. Phase change materials (PCMs) for improving solar still productivity: a review. J Therm Anal Calorim. 2020;139:1585–617.

    Article  CAS  Google Scholar 

  28. Modi KV, Jani HK, Gamit ID. Impact of orientation and water depth on productivity of single-basin dual-slope solar still with Al2O3 and CuO nanoparticles. J Therm Anal Calorim. 2020:1–15.

  29. Ashtiani S, Hormozi F. Design improvement in a stepped solar still based on entropy generation minimization. J Therm Anal Calorim. 2020;140:1095–106.

    Article  CAS  Google Scholar 

  30. Suresh C, Shanmugan S. Effect of water flow in a solar still using novel materials. J Therm Anal Calorim. 2019:1–14.

  31. Kabeel A, Sathyamurthy R, El-Agouz S, El-Said EM. Experimental studies on inclined PV panel solar still with cover cooling and PCM. J Therm Anal Calorim. 2019;138:3987–95.

    Article  CAS  Google Scholar 

  32. Dhivagar R, Sundararaj S. Thermodynamic and water analysis on augmentation of a solar still with copper tube heat exchanger in coarse aggregate. J Therm Anal Calorim. 2019;136:89–99.

    Article  CAS  Google Scholar 

  33. Kumar TS, Jegadheeswaran S, Chandramohan P. Performance investigation on fin type solar still with paraffin wax as energy storage media. J Therm Anal Calorim. 2019;136:101–12.

    Article  Google Scholar 

  34. Sasikumar C, Manokar AM, Vimala M, Winston DP, Kabeel A, Sathyamurthy R, Chamkha AJ. Experimental studies on passive inclined solar panel absorber solar still. J Therm Anal Calorim. 2020;139:3649–60.

    Article  CAS  Google Scholar 

  35. Kabeel A, Abdelgaied M, Mahmoud G. Performance evaluation of continuous solar still water desalination system. J Therm Anal Calorim. 2020:1–10.

  36. Al-Othman A, Tawalbeh M, Assad MEH, Alkayyali T, Eisa A. Novel multi-stage flash (MSF) desalination plant driven by parabolic trough collectors and a solar pond: a simulation study in UAE. Desalination. 2018;443:237–44.

    Article  CAS  Google Scholar 

  37. Mosleh HJ, Mamouri SJ, Shafii M, Sima AH. A new desalination system using a combination of heat pipe, evacuated tube and parabolic trough collector. Energy Convers Manag. 2015;99:141–50.

    Article  Google Scholar 

  38. Rahbar N, Esfahani JA, Asadi A. An experimental investigation on productivity and performance of a new improved design portable asymmetrical solar still utilizing thermoelectric modules. Energy Convers Manag. 2016;118:55–62.

    Article  Google Scholar 

  39. Palenzuela P, Zaragoza G, Alarcón-Padilla D-C. Characterisation of the coupling of multi-effect distillation plants to concentrating solar power plants. Energy. 2015;82:986–95.

    Article  CAS  Google Scholar 

  40. Mohamed AI, El-Minshawy N. Theoretical investigation of solar humidification–dehumidification desalination system using parabolic trough concentrators. Energy Convers Manag. 2011;52:3112–9.

    Article  Google Scholar 

  41. Garg K, Khullar V, Das SK, Tyagi H. Parametric study of the energy efficiency of the HDH desalination unit integrated with nanofluid-based solar collector. J Therm Anal Calorim. 2019;135:1465–78.

    Article  CAS  Google Scholar 

  42. Tlili I, Osman M, Barhoumi E, Alarifi I, Abo-Khalil AG, Praveen R, Sayed K. Performance enhancement of a humidification–dehumidification desalination system. J Therm Anal Calorim. 2020;140:309-319.

  43. Rafiei A, Alsagri AS, Mahadzir S, Loni R, Najafi G, Kasaeian A. Thermal analysis of a hybrid solar desalination system using various shapes of cavity receiver: cubical, cylindrical, and hemispherical. Energy Convers Manag. 2019;198:111861.

    Article  Google Scholar 

  44. Rafiei A, Loni R, Mahadzir SB, Najafi G, Pavlovic S, Bellos E. Solar desalination system with a focal point concentrator using different nanofluids. Appl Therm Eng. 2020;174:115058.

    Article  CAS  Google Scholar 

  45. Lawal DU, Antar MA. Investigation of heat pump-driven humidification–dehumidification desalination system with energy recovery option. J Therm Anal Calorim. 2020:1–18.

  46. Abdelkareem MA, Assad MEH, Sayed ET, Soudan B. Recent progress in the use of renewable energy sources to power water desalination plants. Desalination. 2018;435:97–113.

    Article  CAS  Google Scholar 

  47. Shayesteh AA, Koohshekan O, Ghasemi A, Nemati M, Mokhtari H. Determination of the ORC-RO system optimum parameters based on 4E analysis; Water–Energy–Environment nexus. Energy Convers Manag. 2019;183:772–90.

    Article  CAS  Google Scholar 

  48. Bruno JC, Lopez-Villada J, Letelier E, Romera S, Coronas A. Modelling and optimisation of solar organic rankine cycle engines for reverse osmosis desalination. Appl Therm Eng. 2008;28:2212–26.

    Article  CAS  Google Scholar 

  49. Arslan O, Yetik O. ANN modeling of an ORC-binary geothermal power plant: simav case study. Energy Sources Part A Recovery Util Environ Eff. 2014;36:418–28.

    Article  CAS  Google Scholar 

  50. Arslan O. Power generation from medium temperature geothermal resources: ANN-based optimization of Kalina cycle system-34. Energy. 2011;36:2528–34.

    Article  Google Scholar 

  51. Ozgur M, Arslan O, Kose R, Peker K. Statistical evaluation of wind characteristics in Kutahya, Turkey. Energy Sources Part A. 2009;31:1450–63.

    Article  Google Scholar 

  52. Delgado-Torres AM, García-Rodríguez L. Design recommendations for solar organic Rankine cycle (ORC)–powered reverse osmosis (RO) desalination. Renew Sustain Energy Rev. 2012;16:44–53.

    Article  CAS  Google Scholar 

  53. Shalaby S. Reverse osmosis desalination powered by photovoltaic and solar Rankine cycle power systems: a review. Renew Sustain Energy Rev. 2017;73:789–97.

    Article  CAS  Google Scholar 

  54. Delgado-Torres AM, García-Rodríguez L. Preliminary design of seawater and brackish water reverse osmosis desalination systems driven by low-temperature solar organic Rankine cycles (ORC). Energy Convers Manag. 2010;51:2913–20.

    Article  CAS  Google Scholar 

  55. Ariyanfar L, Yari M, Aghdam EA. Proposal and performance assessment of novel combined ORC and HDD cogeneration systems. Appl Therm Eng. 2016;108:296–311.

    Article  CAS  Google Scholar 

  56. Hou S, Ye S, Zhang H. Performance optimization of solar humidification–dehumidification desalination process using Pinch technology. Desalination. 2005;183:143–9.

    Article  CAS  Google Scholar 

  57. Elsafi AM. Integration of humidification-dehumidification desalination and concentrated photovoltaic-thermal collectors: energy and exergy-costing analysis. Desalination. 2017;424:17–26.

    Article  CAS  Google Scholar 

  58. Huang B, Lin T, Hung W, Sun F. Performance evaluation of solar photovoltaic/thermal systems. Sol Energy. 2001;70:443–8.

    Article  CAS  Google Scholar 

  59. Shahverdi K, Loni R, Ghobadian B, Monem M, Gohari S, Marofi S, Najafi G. Energy harvesting using solar ORC system and Archimedes Screw Turbine (AST) combination with different refrigerant working fluids. Energy Convers Manag. 2019;187:205–20.

    Article  CAS  Google Scholar 

  60. Cengel YA, Ghajar AJ, Kanoglu M. Heat and mass transfer: fundamentals & applications. New York: McGraw-Hill; 2011.

    Google Scholar 

  61. Zubair MI, Al-Sulaiman FA, Antar M, Al-Dini SA, Ibrahim NI. Performance and cost assessment of solar driven humidification dehumidification desalination system. Energy Convers Manag. 2017;132:28–39.

    Article  Google Scholar 

  62. Cengel YA. Thermodynamics An Engineering Approach 5th Edition By Yunus A Cengel: ThermodynamicsAn Engineering Approach, Digital Designs, 2011.

  63. Sahota L, Tiwari G. Exergoeconomic and enviroeconomic analyses of hybrid double slope solar still loaded with nanofluids. Energy Convers Manag. 2017;148:413–30.

    Article  CAS  Google Scholar 

  64. Franchini G, Perdichizzi A. Modeling of a solar driven HD (Humidification-Dehumidification) desalination system. Energy Procedia. 2014;45:588–97.

    Article  CAS  Google Scholar 

  65. Kasaeian A, Daviran S, Azarian RD, Rashidi A. Performance evaluation and nanofluid using capability study of a solar parabolic trough collector. Energy Convers Manag. 2015;89:368–75.

    Article  CAS  Google Scholar 

Download references

Funding

Dr. Najafi and Dr. Loni are grateful to the Tarbiat Modares University (http://www.modares.ac.ir) for the financial supports given under IG/39705 grant for Renewable Energies of Modares research group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Sharifpur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Pressure drop

Appendix A: Pressure drop

Change of pressure drop with changing oil inlet temperature and oil volume flow rate for the smooth and corrugated tube at Ibeam = 800 W m−2 and VFoil = 50 mL s−1 is given in Fig. 22.

Fig. 22
figure 22

Change of pressure drop with changing oil inlet temperature, and oil volume flow rate for the smooth and corrugated tube at Ibeam = 800 W m−2, and VFoil = 50 mL s−1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiei, A., Loni, R., Najafi, G. et al. Assessment of a solar-driven cogeneration system for electricity and desalination. J Therm Anal Calorim 145, 1711–1731 (2021). https://doi.org/10.1007/s10973-020-10525-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10525-0

Keywords

Navigation