Skip to main content
Log in

Thermokinetic and thermodynamics of Pechini derived Li7−3xAlxLa3Zr2O12 (X = 0.0–0.2) xerogel decomposition under oxidative conditions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Solid electrolytes for all-solid-state Li-ion batteries have attracted significant interest with their outstanding safety. But their poor ionic conductivity limits their widespread use. Li7La3Zr2O12 solid electrolytes have the potential of showing comparable ionic conductivities with commercially available electrolytes. However, its high ion conductive cubic phase is not stable at room temperature. Studies demonstrated that the cubic Li7La3Zr2O12 phase can be stabilized easier than solid-state method by modified Pechini method and very little work has been done in order to understand what makes the phase transformation easier. For this purpose, thermal decomposition behavior, model-free kinetics and thermodynamics of Li7La3Zr2O12 xerogels synthesized by modified Pechini method were investigated and the effect of stabilizer (Al) addition was discussed in this study. The results showed the presence of four peak zones and the main reaction zone includes multiple reactions. Different statistical functions were tested for deconvolution of main reaction zone and the best fits were obtained by Bigaussian and Asym2sig statistical functions. The multiple reactions in the main thermal degradation zone were separated into three reaction zones and thermokinetic and thermodynamic calculations were employed using model-free approach. The results also showed that Al incorporation expanded the main thermal decomposition zone of LLZO and resulted in changes in kinetic and thermodynamic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A :

Pre-exponential factor (s1)

E a :

Activation energy (kJ mol−1)

h :

Planck constant (6.626 × 1034 J s).

K B :

Boltzmann constant (1.381 × 1023 J K1)

R :

Universal gas constant (8.3144 × 10−3 kJ mol−1 K−1)

t :

Time (s)

T :

Temperature (K)

T m :

Temperature at the maximum conversion rate (K)

w t :

Mass at time t (mg)

w o :

Mass at the initial stage of the reaction (mg)

w f :

Mass at the final stage of the reaction (mg)

α :

Conversion degree

β :

Heating rate (K min1)

:

Mean value

k(T):

Temperature function

f(α):

Reaction model function

g(α):

Integrated form of reaction model

p(u):

Temperature integral

ΔG :

Gibbs free energy change (kJ mol1)

ΔH :

Enthalpy change (kJ mol1)

ΔS :

Entropy change (J mol1 K1)

References

  1. Wu F, Maier J, Yu Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem Soc Rev. 2020;49:1569–614.

    Article  CAS  PubMed  Google Scholar 

  2. Fan E, Li L, Wang Z, Lin J, Huang Y, Yao Y, et al. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chem Rev. 2020;120:7020–63.

    Article  CAS  PubMed  Google Scholar 

  3. Scrosati B, Garche J. Lithium batteries: status, prospects and future. J Power Sources. 2010;195:2419–30.

    Article  CAS  Google Scholar 

  4. Arbizzani C, Gabrielli G, Mastragostino M. Thermal stability and flammability of electrolytes for lithium-ion batteries. J Power Sources. 2011;196:4801–5.

    Article  CAS  Google Scholar 

  5. Liu H, Wei Z, He W, Zhao J. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review. Energy Convers Manag. 2017;150:304–30.

    Article  CAS  Google Scholar 

  6. Kalhoff J, Eshetu GG, Bresser D, Passerini S. Safer electrolytes for lithium-ion batteries: state of the art and perspectives. Chemsuschem. 2015;8:2154–75.

    Article  CAS  PubMed  Google Scholar 

  7. Sun Y-K, Myung S-T, Park B-C, Prakash J, Belharouak I, Amine K. High-energy cathode material for long-life and safe lithium batteries. Nat Mater. 2009;8:320–4.

    Article  CAS  PubMed  Google Scholar 

  8. Thangadurai V, Narayanan S, Pinzaru D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev. 2014;43:4714.

    Article  CAS  PubMed  Google Scholar 

  9. Jin Y, McGinn PJ. Li7La3Zr2O12 electrolyte stability in air and fabrication of a Li/Li7La3Zr2O12/Cu0.1V2O5 solid-state battery. J Power Sources. 2013;239:326–31.

    Article  CAS  Google Scholar 

  10. Thompson T, Wolfenstine J, Allen JL, Johannes M, Huq A, David IN, et al. Tetragonal vs. cubic phase stability in Al–free Ta doped Li7La3Zr2O12 (LLZO). J Mater Chem A. 2014;2:13431–6.

    Article  CAS  Google Scholar 

  11. Allen JL, Wolfenstine J, Rangasamy E, Sakamoto J. Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. J Power Sources. 2012;206:315–9.

    Article  CAS  Google Scholar 

  12. El Shinawi H, Janek J. Stabilization of cubic lithium-stuffed garnets of the type “Li7La3Zr2O12” by addition of gallium. J Power Sources. 2013;225:13–9.

    Article  CAS  Google Scholar 

  13. Rettenwander D, Geiger CA, Amthauer G. Synthesis and Crystal Chemistry of the Fast Li-Ion Conductor Li7La3Zr2O12 Doped with Fe. Inorg Chem. 2013;52:8005–9.

    Article  CAS  PubMed  Google Scholar 

  14. Rangasamy E, Wolfenstine J, Sakamoto J. The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ionics. 2012;206:28–32.

    Article  CAS  Google Scholar 

  15. Cao Z, Wu W, Li Y, Zhao J, He W, Liu J, et al. Lithium ionic conductivity of Li7-3xFexLa3Zr2O12 ceramics by the Pechini method. Ionics. 2020;26:4247–56.

    Article  CAS  Google Scholar 

  16. Shen F, Guo W, Zeng D, Sun Z, Gao J, Li J, et al. A Simple and Highly Efficient Method toward High-Density Garnet-Type LLZTO Solid-State Electrolyte. ACS Appl Mater Interfaces. 2020;12:30313–9.

    Article  CAS  PubMed  Google Scholar 

  17. Ahn JH, Park S-Y, Lee J-M, Park Y, Lee J-H. Local impedance spectroscopic and microstructural analyses of Al-in-diffused Li7La3Zr2O12. J Power Sources. 2014;254:287–92.

    Article  CAS  Google Scholar 

  18. Chen R-J, Huang M, Huang W-Z, Shen Y, Lin Y-H, Nan C-W. Effect of calcining and Al doping on structure and conductivity of Li 7 La 3 Zr 2 O 12. Solid State Ionics. 2014;265:7–12.

    Article  CAS  Google Scholar 

  19. Dermenci KB, Çekiç E, Turan S. Al stabilized Li7La3Zr2O12 solid electrolytes for all-solid state Li-ion batteries. Int J Hydrog Energy. 2016;41:9860–7.

    Article  CAS  Google Scholar 

  20. Dermenci KB, Turan S. Structural insights on understanding the cubic phase stabilization mechanism of sol–gel synthesized Li7-3xAlxLa3Zr2O12 (x = 0–0.4): The effect of ZrOCl2 and ZrO(NO3)2. Ceram Int. 2018;44:11852–7.

    Article  CAS  Google Scholar 

  21. Chowdhury A, O’Callaghan S, Skidmore TA, James C, Milne SJ. Nanopowders of Na 0.5 K 0.5 NbO 3 prepared by the Pechini method. J Am Ceram Soc. 2009;92:758–61.

    Article  CAS  Google Scholar 

  22. Rojek B, Wesolowski M. Compatibility study of theophylline with excipients using thermogravimetry supported by kinetic analysis. J Therm Anal Calorim. 2020;120:7020–63.

    Google Scholar 

  23. Qureshi U, Imtiaz B, Jamal Y. Synthesizing PET and food waste into refuse plastic fuel (RPF): optimization and kinetic modeling. J Therm Anal Calorim. 2019;140:1745–58.

    Article  CAS  Google Scholar 

  24. Granado L, Tavernier R, Foyer G, David G, Caillol S. Comparative curing kinetics study of high char yield formaldehyde- and terephthalaldehyde-phenolic thermosets. Thermochim Acta. 2018;667:42–9.

    Article  CAS  Google Scholar 

  25. Das P, Tiwari P. Thermal degradation kinetics of plastics and model selection. Thermochim Acta. 2017;654:191–202.

    Article  CAS  Google Scholar 

  26. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  27. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C Polym Symp. 2007;6:183–95.

    Article  Google Scholar 

  28. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand Sect A Phys Chem. 1966;70A:487–523.

    Article  Google Scholar 

  29. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  30. Starink MJ. A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochim Acta. 1996;288:97–104.

    Article  CAS  Google Scholar 

  31. Awasthi A, Dhyani V, Biswas B, Kumar J, Bhaskar T. Production of phenolic compounds using waste coir pith: estimation of kinetic and thermodynamic parameters. Bioresour Technol. 2019;274:173–9.

    Article  CAS  PubMed  Google Scholar 

  32. Sharma P, Pandey OP, Diwan PK. Non-isothermal kinetics of pseudo-components of waste biomass. Fuel. 2019;253:1149–61.

    Article  CAS  Google Scholar 

  33. Afyon S, Krumeich F, Rupp JLM. A shortcut to garnet-type fast Li-ion conductors for all-solid state batteries. J Mater Chem A. 2015;3:18636–48.

    Article  CAS  Google Scholar 

  34. Li H, Liu F, Ma X, Cui P, Gao Y, Yu M, et al. Effects of biodiesel blends on the kinetic and thermodynamic parameters of fossil diesel during thermal degradation. Energy Convers Manag. 2019;198:111930.

    Article  CAS  Google Scholar 

  35. Kok MV, Varfolomeev MA, Nurgaliev DK. Low-temperature oxidation reactions of crude oils using TGA–DSC techniques. J Therm Anal Calorim. 2019;141:775–81.

    Article  CAS  Google Scholar 

  36. Carrier M, Auret L, Bridgwater A, Knoetze JH. Using apparent activation energy as a reactivity criterion for biomass pyrolysis. Energy Fuels. 2016;30:7834–41.

    Article  CAS  Google Scholar 

  37. Mehmood MA, Ahmad MS, Liu Q, Liu CG, Tahir MH, Aloqbi AA, et al. Helianthus tuberosus as a promising feedstock for bioenergy and chemicals appraised through pyrolysis, kinetics, and TG–FTIR–MS based study. Energy Convers Manag. 2019;194:37–45.

    Article  CAS  Google Scholar 

  38. Ma J, Luo H, Li Y, Liu Z, Li D, Gai C, et al. Pyrolysis kinetics and thermodynamic parameters of the hydrochars derived from co-hydrothermal carbonization of sawdust and sewage sludge using thermogravimetric analysis. Bioresour Technol. 2019;282:133–41.

    Article  CAS  PubMed  Google Scholar 

  39. Zsakó J. The kinetic compensation effect. J Therm Anal. 1976;9:101–8.

    Article  Google Scholar 

  40. Janković B. The pyrolysis of coffee paper cup waste samples using non-isothermal thermo-analytical techniques. The use of combined kinetic and statistical analysis in the interpretation of mechanistic features of the process. Energy Convers Manag. 2014;85:33–49.

    Article  CAS  Google Scholar 

  41. Uzun BB, Yaman E. Pyrolysis kinetics of walnut shell and waste polyolefins using thermogravimetric analysis. J Energy Inst. 2017;90:825–37.

    Article  CAS  Google Scholar 

  42. Jia C, Chen J, Bai J, Yang X, Song S, Wang Q. Kinetics of the pyrolysis of oil sands based upon thermogravimetric analysis. Thermochim Acta. 2018;666:66–74.

    Article  CAS  Google Scholar 

  43. Galwey AK, Mortimer M. Compensation effects and compensation defects in kinetic and mechanistic interpretations of heterogeneous chemical reactions. Int J Chem Kinet. 2006;38:464–73.

    Article  CAS  Google Scholar 

  44. Chong CT, Mong GR, Ng J-H, Chong WWF, Ani FN, Lam SS, et al. Pyrolysis characteristics and kinetic studies of horse manure using thermogravimetric analysis. Energy Convers Manag. 2019;180:1260–7.

    Article  CAS  Google Scholar 

  45. Mumbach GD, Alves JLF, Da Silva JCG, De Sena RF, Marangoni C, Machado RAF, et al. Thermal investigation of plastic solid waste pyrolysis via the deconvolution technique using the asymmetric double sigmoidal function: Determination of the kinetic triplet, thermodynamic parameters, thermal lifetime and pyrolytic oil composition for clean. Energy Convers Manag. 2019;200:112031.

    Article  CAS  Google Scholar 

  46. Fong MJB, Loy ACM, Chin BLF, Lam MK, Yusup S, Jawad ZA. Catalytic pyrolysis of Chlorella vulgaris: kinetic and thermodynamic analysis. Bioresour Technol. 2019;289:121689.

    Article  CAS  PubMed  Google Scholar 

  47. Tiong YW, Yap CL, Gan S, Yap WSP. Kinetic and thermodynamic studies of oil palm mesocarp fiber cellulose conversion to levulinic acid and upgrading to ethyl levulinate via indium trichloride-ionic liquids. Renew Energy. 2020;146:932–43.

    Article  CAS  Google Scholar 

  48. Ding G, He B, Yao H, Cao Y, Su L, Duan Z. Co-combustion behaviors of municipal solid waste and low-rank coal semi-coke in air or oxygen/carbon dioxide atmospheres. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09170-z.

    Article  Google Scholar 

Download references

Acknowledgements

The study was funded by Eskisehir Technical University Scientific Research Projects Unit with a grant number of 1802F030. Authors would also like to thank Prof. Dr. Ender Suvacı and Dr. Tümerkan Kesim for their valuable support on TGA analysis. Data collection and analysis were performed by Dr. Kamil Burak Dermenci and Dr. Gamzenur Özsin. Writing review and editing were performed by Prof. Dr. Servet Turan. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamil Burak Dermenci.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özsin, G., Dermenci, K.B. & Turan, S. Thermokinetic and thermodynamics of Pechini derived Li7−3xAlxLa3Zr2O12 (X = 0.0–0.2) xerogel decomposition under oxidative conditions. J Therm Anal Calorim 146, 1405–1420 (2021). https://doi.org/10.1007/s10973-020-10462-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10462-y

Keywords

Navigation