Skip to main content

Advertisement

Log in

Integrated investigation of the Li4Ti5O12 phase stability

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The Li4Ti5O12 is applied in lithium ion batteries as anode material, which can be synthesized by various synthesis techniques. In this study, the molten salt synthesis technique at low temperatures, i.e. 350 °C, was applied to synthesize Li4Ti5O12. Surprisingly, the Li4Ti5O12 was not formed according to XRD analysis, which raised question about the stability range of Li4Ti5O12. To investigate the stability of Li4Ti5O12 at low temperatures, the high-temperature calcined Li4Ti5O12 powder was equilibrated in the LiCl-KCl eutectic salt at 350 °C. The result of experiment revealed that the Li4Ti5O12 is not decomposed. Results of ab initio calculations also indicated that the Li4Ti5O12 phase is a stable phase at 0 K. The products of molten salt synthesis technique were then annealed at 900 °C, which resulted in the Li4Ti5O12 formation. It was concluded that the Li4Ti5O12 is a stable phase at low temperatures and the reasons for not forming the Li4Ti5O12 by molten salt technique at low temperature are possibly related to activation energy and kinetic barriers. The Li4Ti5O12 formation energy is also very small, due to the results of ab initio calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Armand M, Tarascon J-M (2008) Building better batteries. Nature 451:652–657

    Article  CAS  Google Scholar 

  2. Vijayakumar M, Kerisit S, Yang Z, Graff GL, Liu J, Sears JA et al (2009) Combined 6, 7Li NMR and molecular dynamics study of Li diffusion in Li2TiO3. J Phys Chem C 113:20108–20116

    Article  CAS  Google Scholar 

  3. Bai Y, Wang F, Wu F, Wu C, Bao L-y (2008) Influence of composite LiCl–KCl molten salt on microstructure and electrochemical performance of spinel Li4Ti5O12. Electrochim Acta 54:322–327

    Article  CAS  Google Scholar 

  4. Zhao L, Hu YS, Li H, Wang Z, Chen L (Mar 18 2011) Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv Mater 23:1385–1388

    Article  CAS  Google Scholar 

  5. Wang YQ, Gu L, Guo YG, Li H, He XQ, Tsukimoto S et al (May 9 2012) Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J Am Chem Soc 134:7874–7879

    Article  CAS  Google Scholar 

  6. Sorensen EM, Barry SJ, Jung H-K, Rondinelli JM, Vaughey JT, Poeppelmeier KR (2006) Three-dimensionally ordered macroporous Li4Ti5O12: effect of wall structure on electrochemical properties. Chem Mater 18:482–489

    Article  CAS  Google Scholar 

  7. Nasara RN, Tsai P-C, Lin S-K (2017) One-step synthesis of highly oxygen-deficient lithium titanate oxide with conformal amorphous carbon coating as anode material for lithium ion batteries. Adv Mater Interfaces. doi:10.1002/admi.201700329

  8. Panero S, Reale P, Ronci F, Albertini VR, Scrosati B (2000) Structural and electrochemical study on Li(Li1/3Ti5/3)O4 anode material for lithium ion batteries. Ionics 6:461–465

    Article  CAS  Google Scholar 

  9. Ohzuku T, Ueda A, Yamamoto N (1995) Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J Electrochem Soc 142:1431–1435

    Article  CAS  Google Scholar 

  10. Kleykamp H (2002) Phase equilibria in the Li–Ti–O system and physical properties of Li2TiO3. Fusion engineering and design 61:361–366

    Article  Google Scholar 

  11. Izquierdo G, West AR (1980) Phase equilibria in the system Li2O-TiO2. Mater Res Bull 15:1655–1660

    Article  CAS  Google Scholar 

  12. Veljkovic I, Poleti D, Karanovic L, Zdujic M, Brankovic G (2011) Solid state synthesis of extra phase-pure Li4Ti5O12 spinel. Sci Sinter 43:343–351

    Article  CAS  Google Scholar 

  13. Cheng L, Liu H-J, Zhang J-J, Xiong H-M, Xia Y-Y (2006) Nanosized Li4Ti5O12 prepared by molten salt method as an electrode material for hybrid electrochemical supercapacitors. J Electrochem Soc 153:A1472–A1477

    Article  CAS  Google Scholar 

  14. Ceder G, Aydinol M, Kohan A (1997) Application of first-principles calculations to the design of rechargeable Li-batteries. Comput Mater Sci 8:161–169

    Article  CAS  Google Scholar 

  15. Tsai P-c, Hsu W-D, Lin S-k (2014) Atomistic structure and ab initio electrochemical properties of Li4Ti5O12 defect spinel for Li ion batteries. J Electrochem Soc 161:A439–A444

    Article  CAS  Google Scholar 

  16. Asadikiya M, Rudolf C, Zhang C, Boesl B, Agarwal A, Zhong Y (2017) Thermodynamic modeling and investigation of the oxygen effect on the sintering of B4C. J Alloys Compd 699:1022–1029

    Article  CAS  Google Scholar 

  17. Asadikiya M, Rudolf C, Zhang C, Boesl B, Zhong Y (2016) The role of CALPHAD approach in the sintering of B4C with SiC as a sintering aid by spark plasma sintering technique. In: Additive manufacturing and strategic technologies in advanced ceramics: ceramic transactions, pp 185–191

    Chapter  Google Scholar 

  18. Asadikiya M, Sabarou H, Chen M, Zhong Y (2016) Phase diagram for a nano-yttria-stabilized zirconia system. RSC Adv 6:17438–17445

    Article  CAS  Google Scholar 

  19. Asadikiya M et al (2017) The effect of sintering parameters on spark plasma sintering of B4C. Ceram Int 43(14):11182–11188

  20. Koudriachova M (2008) Ramsdellite-structured LiTiO2: a new phase predicted from ab initio calculations. Chem Phys Lett 458:108–112

    Article  CAS  Google Scholar 

  21. Ouyang C, Zhong Z, Lei M (2007) Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel. Electrochem Commun 9:1107–1112

    Article  CAS  Google Scholar 

  22. Lippens P-E, Womes M, Kubiak P, Jumas J-C, Olivier-Fourcade J (2004) Electronic structure of the spinel Li4Ti5O12 studied by ab initio calculations and X-ray absorption spectroscopy. Solid State Sci 6:161–166

    Article  CAS  Google Scholar 

  23. Kataoka K, Takahashi Y, Kijima N, Hayakawa H, Akimoto J, Ohshima K-i (2009) A single-crystal study of the electrochemically Li-ion intercalated spinel-type Li4Ti5O12. Solid State Ionics 180:631–635

    Article  CAS  Google Scholar 

  24. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  25. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133

    Article  Google Scholar 

  26. Perdew JP, Yue W (1986) Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation. Phys Rev B 33:8800

    Article  CAS  Google Scholar 

  27. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  28. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953

    Article  Google Scholar 

  29. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188

    Article  Google Scholar 

  30. Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S et al (2013) Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Materials 1:011002

    Article  Google Scholar 

  31. Ong SP, Richards WD, Jain A, Hautier G, Kocher M, Cholia S et al (2013) Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput Mater Sci 68:314–319

    Article  CAS  Google Scholar 

  32. Raghavachari K, Strout DL, Odom GK, Scuseria GE, Pople JA, Johnson BG, Gill PMW (1993) Isomers of C20. Dramatic effect of gradient corrections in density functional theory. Chem Phys Lett 214(3–4):357–361

  33. Bo S, Ping Z (2008) First-principles local density approximation (LDA) + U and generalized gradient approximation (GGA) + U studies of plutonium oxides. Chinese Physics B 17:1364

    Article  Google Scholar 

  34. Kamiya T, Nomura K, Hosono H (2009) Electronic structure of the amorphous oxide semiconductor a-InGaZnO4–x: Tauc–Lorentz optical model and origins of subgap states. Phys Status Solidi A 206:860–867

    Article  CAS  Google Scholar 

  35. Loschen C, Carrasco J, Neyman KM, Illas F (2007) First-principles LDA + U and GGA + U study of cerium oxides: dependence on the effective U parameter. Phys Rev B 75:035115

    Article  Google Scholar 

  36. Gopalan S, Mehta K, Virkar AV (1996) Synthesis of oxide perovskite solid solutions using the molten salt method. J Mater Res 11:1863–1865

    Article  CAS  Google Scholar 

  37. Gopalan S, Virkar AV (1993) Thermodynamic stabilities of SrCeO3 and BaCeO3 using a molten salt method and galvanic cells. J Electrochem Soc 140:1060–1065

    Article  CAS  Google Scholar 

  38. Hanaor DAH, Sorrell CC (2010) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874

    Article  Google Scholar 

  39. Shen Y, Søndergaard M, Christensen M, Birgisson S, Iversen BB (2014) Solid state formation mechanism of Li4Ti5O12 from an anatase TiO2 source. Chem Mater 26:3679–3686

    Article  CAS  Google Scholar 

  40. Shin J-W, Hong C-H, Yoon D-H (2012) Effects of TiO2 starting materials on the solid-state formation of Li4Ti5O12. J Am Ceram Soc 95:1894–1900

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.K.L., Y.C.C., P.C.T, and R.N.N. wish to thank the financial support from the Ministry of Science and Technology (MOST), Taiwan, with the contract numbers of 105-2221-E-006-189-MY3 and 105-3113-E-006-019-CC2. M.A. is greatly appreciated of the Doctoral Evidence Acquisition (DEA) Fellowship from Graduate School of Florida International University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Asadikiya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadikiya, M., Zhu, Y., Gopalan, S. et al. Integrated investigation of the Li4Ti5O12 phase stability. Ionics 24, 707–713 (2018). https://doi.org/10.1007/s11581-017-2248-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2248-x

Keywords

Navigation