Skip to main content
Log in

Electrothermal analysis in two-layered couple stress fluid flow in an asymmetric microchannel via peristaltic pumping

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Being motivated from the recent developments in biomicrofluidics, a mathematical model is presented to analyze the two-layered electrothermal flow via peristaltic propulsion of couple stress fluids caused by velocity and thermal slip conditions. An asymmetric microchannel is considered for the flow regime with different zeta potential moving with wave velocity. Couple stress fluid has been taken for aqueous solution to represent the non-Newtonian characteristics of physiological fluids. A lubrication approach with Debye H\(\ddot{u}\)ckel linearization is taken to obtain the analytical solution. Furthermore, heat transfer analysis is performed to analyze the thermal characteristics and variations in Nusselt number in the presence of thermal radiation. The study shows that the temperature reduces with increasing the electrical double layer thickness, thermal radiation, couple stress parameter, and magnitude of Brinkman number, however, it enhances with increasing the Joule heating and thermal slip effects. The rate of heat transfer enhances with Joule heating effects, while the trend is reversed due to the presence of two-layered electroosmotic flow and couple stress effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Iverson BD, Garimella SV. Recent advances in microscale pumping technologies: a review and evaluation. Microfluid Nanofluidics. 2008;5:145–74.

    CAS  Google Scholar 

  2. Harnett CK, Templeton J, Dunphy-Guzman KA, Senousy YM, Kanouff MP. Model based design of a microfluidic mixer driven by induced charge electroosmosis. Lab Chip. 2008;8:565–72.

    PubMed  CAS  Google Scholar 

  3. Meng G, Gui L. A handy liquid metal based electroosmotic flow pump. Lab Chip. 2014;14:1866–72.

    Google Scholar 

  4. Abdelsalam SI, Mekheimer KhS, Zaher AZ. Alterations in blood stream by electroosmotic forces of hybrid nanofluid through diseased artery: aneurysmal/stenosed segment. Chin J Phys. 2020;67:314–29.

    CAS  Google Scholar 

  5. Moghadam AJ. Thermal transport characteristics of AC electrokinetic flow in a micro-annulus. J Therm Anal Calorim. 2020;. https://doi.org/10.1007/s10973-020-09793-7.

    Article  Google Scholar 

  6. Riaz A, Ellahi R, Sai SM. Role of hybrid nanoparticles in thermal performance of peristaltic flow of Eyring–Powell fluid model. J Therm Anal Calorim. 2020;. https://doi.org/10.1007/s10973-020-09872-9.

    Article  Google Scholar 

  7. Bhatti MM, Riaz A, Zhang L, Sait SM, Ellahi R. Biologically inspired thermal transport on the rheology of Williamson hydromagnetic nanofluid flow with convection: an entropy analysis. J Therm Anal Calorim. 2020;. https://doi.org/10.1007/s10973-020-09876-5.

    Article  Google Scholar 

  8. Patankar NA, Hu HH. Numerical simulation of electroosmotic flow. Anal Chem. 1998;70:1870–81.

    PubMed  CAS  Google Scholar 

  9. Herr AE, Molho JI, Santiago JG, Mungal MG, Kenny TW, Garguilo MG. Electroosmotic capillary flow with nonuniform zeta potential. Anal Chem. 2000;72:1053–7.

    PubMed  CAS  Google Scholar 

  10. Posner JD, Santiago JG. Convective instability of electrokinetic flows in a cross-shaped microchannel. J Fluid Mech. 2006;555:1–42.

    Google Scholar 

  11. Elmaboud YA, Abdelsalam SI, Mekheimer KhS, Vafai K. Electromagnetic flow for two-layer immiscible fluids. Eng Sci Technol Int J. 2019;22:237–48.

    Google Scholar 

  12. Mekheimer KhS, Zaher AZ, Hasona WM. Entropy of AC electro-kinetics for blood mediated gold or copper nanoparticles as a drug agent for thermotherapy of oncology. Chin J Phys. 2020;65:123–38.

    CAS  Google Scholar 

  13. Zhao C, Zholkovskij E, Masliyah JH, Yang C. Analysis of electroosmotic flow of power-law fluids in a slit microchannel. J Colloid Interface Sci. 2008;326:503–10.

    PubMed  CAS  Google Scholar 

  14. Afonso AM, Alves MA, Pinho FT. Analytical solution of mixed electro-osmotic/ pressure driven flows of viscoelastic fluids in microchannels. J Non Newton Fluid Mech. 2009;159:50–63.

    CAS  Google Scholar 

  15. Sarma R, Deka N, Sarma K, Mondal PK. Electroosmotic flow of Phan–Thien–Tanner fluids at high zeta potentials: an exact analytical solution. Phys Fluids. 2018;30:062001.

    Google Scholar 

  16. Si D, Jian YJ. Electromagnetohydrodynamic (EMHD) micropump of Jeffrey fluids through two parallel microchannels with corrugated walls. J Phys D. 2015;48:085501.

    Google Scholar 

  17. Shit GC, Ranjit NK, Sinha A. Adomian decomposition method for magnetohydrodynamic flow of blood induced by peristaltic waves. J Mech Med Biol. 2017;17:1750007.

    Google Scholar 

  18. Ranjit NK, Shit GC, Sinha A. Transportation of ionic liquids in a porous microchannel induced by peristaltic wave with Joule heating and wall-slip conditions. Chem Eng Sci. 2017;171:545–57.

    CAS  Google Scholar 

  19. Dutta S, Mandal PK, Goswami P. Slipping hydrodynamics of Powell–Eyring fluid in a cylindrical microchannel under electrical double layer phenomenon. Phys Scr. 2019;94:025002.

    CAS  Google Scholar 

  20. Mukherjee S, Goswami P, Dhar J, Dasgupta S, Chakraborty S. Ion-size dependent electroosmosis of viscoelastic fluids in microfluidic channels with interfacial slip. Phys Fluids. 2017;29:072002.

    Google Scholar 

  21. Varol Y, Oztop HF. A comparative numerical study on natural convection in inclined wavy and flat-plate solar collectors. Build Environ. 2008;43:1535–44.

    Google Scholar 

  22. Sheremet M, Pop I, Oztop HF, Abu-Hamdeh N. Natural convection of nanofluid inside a wavy cavity with a non-uniform heating: entropy generation analysis. Int J Num Methods Heat Fluid Flow. 2017;27:958–80.

    Google Scholar 

  23. Sheremet M, Oztop HF, Pop I. MHD natural convection in an inclined wavy cavity with corner heater filled with a nanofluid. J Magn Magn Mater. 2016;416:37–47.

    CAS  Google Scholar 

  24. Gao M, Gui L. Development of a fast thermal response microfluidic system using liquid metal. J Micromech Microeng. 2016;26:075005.

    Google Scholar 

  25. Si C, Hu S, Cao X, Wu W. High response speed microfluidic ice valves with enhanced thermal conductivity and a movable refrigeration source. Sci Rep. 2017;7:40570.

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Xuan X, Sinton D, Li D. Thermal end effects on electroosmotic flow in a capillary. Int J Heat Mass Transf. 2004;47:14–6.

    Google Scholar 

  27. Keramati H, Sadeghi A, Saidi MH, Chakraborty S. Analytical solutions for thermo-fluidic transport in electroosmotic flow through rough microtubes. Int J Heat Mass Transf. 2016;92:244–51.

    Google Scholar 

  28. Asadollahi A, Esfahani JA, Ellahi R. Evacuating liquid coatings from a diffusive oblique fin in micro-/minichannels. J Therm Anal Calorim. 2019;138(1):255–63.

    CAS  Google Scholar 

  29. Erickson D, Sinton D, Li D. Joule heating and heat transfer in polydimethylsiloxane microfluidic systems. Lab Chip. 2003;3:141–9.

    PubMed  CAS  Google Scholar 

  30. Xuan X, Xu B, Sinton D, Li D. Electroosmotic flow with Joule heating effects. Lab Chip. 2004;4:230–6.

    PubMed  CAS  Google Scholar 

  31. Tang GY, Yang C, Chai JC, Gong HQ. Joule heating effect on electroosmotic flow and mass species transport in a microcapillary. Int J Heat Mass Transf. 2004;47:215–27.

    CAS  Google Scholar 

  32. Sarkar S, Ganguly S. Fully developed thermal transport in combined pressure and electroosmotically driven flow of nanofluid in a microchannel under the effect of a magnetic field. Microfluid Nanofluidics. 2015;18:623–36.

    CAS  Google Scholar 

  33. Ramos EA, Bautista O, Lizardi JJ, Mendez F. A perturbative thermal analysis for an electro-osmotic flow in a slit microchannel based on a Lubrication theory. Int J Therm Sci. 2017;111:499–510.

    CAS  Google Scholar 

  34. Gul F, Maqbool K, Mann AB. Thermal analysis of electroosmotic fow in a vertical ciliated tube with viscous dissipation and heat source efects. J Therm Anal Calorim. 2020;. https://doi.org/10.1007/s10973-020-09702-y.

    Article  Google Scholar 

  35. Noreen S, Ain QU. Entropy generation analysis on electroosmotic flow in non-Darcy porous medium via peristaltic pumping. J Therm Anal Calorim. 2019;137:1991–2006.

    CAS  Google Scholar 

  36. Ranjit NK, Shit GC. Joule heating effects on electromagnetohydrodynamic flow through a peristaltically induced micro-channel with different zeta potential and wall slip. Phys A. 2017;482:458–76.

    CAS  Google Scholar 

  37. Zhao G, Jian YJ. Thermal transport of combined electroosmotically and pressure driven nanofluid flow in soft nanochannels. J Therm Anal Calorim. 2019;135:379–91.

    CAS  Google Scholar 

  38. Ramesh K, Prakash J. Thermal analysis for heat transfer enhancement in electroosmosis-modulated peristaltic transport of Sutterby nanofluids in a microfluidic vessel. J Therm Anal Calorim. 2019;138:1311–26.

    CAS  Google Scholar 

  39. Ranjit NK, Shit GC, Tripathi D. Entropy generation and Joule heating of two layered electroosmotic flow in the peristaltically induced micro-channel. Int J Mech Sci. 2019;153–154:430–44.

    Google Scholar 

  40. Xie ZY, Jian YJ. Entropy generation of two-layer magnetohydrodynamic electroosmotic flow through microparallel channels. Energy. 2017;139:1080–93.

    Google Scholar 

  41. Shu JJ, Teo JBM, Chan WK. Fluid velocity slip and temperature jump at a solid surface. Appl Mech Rev. 2017;69:020801.

    Google Scholar 

  42. Goswami P, Chakraborty S. Semi-analytical solutions for electrosomotic flows with interfacial slip in microchannels of complex crosssectional shapes. Microfluid Nanofluidics. 2011;11:255–67.

    CAS  Google Scholar 

  43. Shapiro AH, Jaffrin MY, Weinberg SL. Peristaltic pumping with long wavelengths at low Reynolds number. J Fluid Mech. 1969;37:799–825.

    Google Scholar 

  44. Jaffrin MY, Shapiro AH. Peristaltic pumping. Annu Rev Fluid Mech. 1971;3:13–37.

    Google Scholar 

  45. Su J, Jian YJ, Chang L, Liu Q. Transient electro-osmotic and pressure driven flows of two-layer fluids through a slit microchannel. Acta Mech Sin. 2013;29(4):534–42.

    CAS  Google Scholar 

  46. Eytan O, Jaffa AJ, Elad D. Peristaltic flow in a tapered channel: application to embryo transport within the uterine cavity. Med Eng Phys. 2001;23:475–84.

    Google Scholar 

  47. Tripathi D. Study of transient peristaltic heat flow through a finite porous channel. Math Comput Model. 2013;57:1270–80.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the esteemed reviewers for their constructive suggestions, based on which the present manuscript is revised. The author G. C. Shit is greatly acknowledge to SERB, Department of Science and Technology, New Delhi, Government of India for providing research project Grant No. EEQ/2016/000050.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Shit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The expressions that appear in Sect. 2 are listed as follows:

$$\begin{aligned} j_{1}= &\, {} \left( \frac{m_1^2 \gamma _1^2}{m_1^4-\gamma _1^2 m_1^2}\right) ,\\ j_{2}= &\, {} \left( \frac{m_2^2\gamma _2^2 \epsilon }{\mu \left( m_2^4-\gamma _2^2 m_2^2\right) }\right) ,\\ j_{3}= &\, {} \left( h_1 + \beta _1\right) ,\\ j_{4}= &\, {} \left[ \sinh \left( \gamma _1 h_1\right) +\left( \beta _1 \gamma _1\right) \cosh \left( \gamma _1 h_1\right) \right] ,\\ j_{5}= &\, {} \left[ \cosh \left( \gamma _1 h_1\right) +\left( \beta _1 \gamma _1\right) \sinh \left( \gamma _1 h_1\right) \right] ,\\ j_{6}= &\, {} -\left( \frac{h_1^2}{2}+\beta _1 h_1\right) ,\\ j_{7}= &\, {} \left[ \left( j_1 A_1\right) \left( \cosh \left( m_1 h_1\right) \right. \right. \\&\left. \left. +\left( \beta _1 m_1\right) \sinh \left( m_1 h_1\right) \right) \right. \\&\left. +\left( j_1 B_1\right) \left[ \sinh \left( m_1 h_1\right) +\left( \beta _1 m_1\right) \cosh \left( m_1 h_1\right) \right] \right] ,\\ j_{8}= &\, {} \left( h_2-\beta _2\right) ,\\ j_{9}= &\, {} \left[ \sinh \left( \gamma _2 h_2\right) -\left( \beta _2 \gamma _2\right) \cosh \left( \gamma _2 h_2\right) \right] ,\\ j_{10}= &\, {} \left[ \cosh \left( \gamma _2 h_2\right) \right. \\&\left. -\,\left( \beta _2 \gamma _2\right) \sinh \left( \gamma _2 h_2\right) \right], \end{aligned}$$
$$\begin{aligned}j_{11}= &\, {} -\left( \frac{h_2^2}{2\mu }-\frac{h_2\beta _2}{\mu }\right) \\ j_{12}= &\, {} \left[ \left( j_2 A_2\right) \left( \cosh \left( m_2 h_2\right) -\left( \beta _2 m_2\right) \sinh \left( m_2 h_2\right) \right) \right. \\&\left. +\,\left( j_2 B_2\right) \left[ \sinh \left( m_2 h_2\right) -\left( \beta _2 m_2\right) \cosh \left( m_2 h_2\right) \right] \right] ,\\ j_{13}= &\, {} \left( \gamma _1^2 \sinh \left( \gamma _1 h_1\right) \right) ,\\ j_{14}= &\, {} \left( \gamma _1^2 \cosh \left( \gamma _1 h_1\right) \right) ,\\ j_{15}= &\, {} j_1\left[ \left( A_1 m_1^2\right) \left( \cosh \left( m_1 h_1\right) +\left( B_1 m_1^2\right) \sinh \left( m_1 h_1\right) \right) \right] ,\\ j_{16}= &\, {} \left( \gamma _2^2 \sinh \left( \gamma _2 h_2\right) \right) ,~\\ j_{17}= &\, {} \left( \gamma _2^2 \cosh \left( \gamma _2 h_2\right) \right) ,\\ j_{18}= &\, {} j_2\left[ \left( A_2 m_2^2\right) \left( \cosh \left( m_2 h_2\right) +\left( B_2 m_2^2\right) \sinh \left( m_2 h_2\right) \right) \right] ,\\ j_{19}= &\, {} \left( j_1 A_1 - j_2 A_2\right) ,\\ j_{20}= &\, {} \left[ \left( j_1 B_1\right) \left( m_1-\frac{m_1^3}{\gamma _1^2}\right) \right. \\&\left. - \left( j_2 \mu B_2 \right) \left( m_2-\frac{m_2^3}{\gamma _2^2}\right) + \left( m_1^2 A_1 - \epsilon m_2^2 A_2 \right) \right] ,\\ j_{21}= &\, {} \left( j_1 B_1 m_1 - j_2 B_2 m_2\right) ,\end{aligned}$$
$$\begin{aligned} j_{22}= &\, {} \left( \frac{j_1 A_1 m_1^2}{\gamma _1^2}-\frac{j_2 A_2 m_2^2}{\gamma _2^2}\right) ,\\ j_{23}= &\, {} \left( j_5-1\right) ,\\ j_{24}= &\, {} \left( j_7-j_{19}\right) ,\\ j_{25}= &\, {} \left( j_{21}-j_{20}\right) ,~\\ j_{26}= &\, {} \left( j_{24}-j_3 j_{20}\right) ,\\ j_{27}= &\, {} \left( \mu j_3 - j_8\right) ,\\ j_{28}= &\, {} \left( 1-j_{10}\right) ,~\\ j_{29}= &\, {} \left( j_{26}-j_{12}\right) ,~\\ j_{30}= &\, {} \left( j_4 j_{14} - j_{23} j_{13}\right) ,\\ j_{31}= &\, {} \left( j_{14} j_{27}\right) ,~\\ j_{32}= &\, {} -\left( j_9 j_{14}\right) ,~\\ j_{33}= &\, {} \left( j_{14} j_{28}\right) ,\\ j_{34}= &\, {} \left( j_6 j_{14} + j_{23}\right) ,~\\ j_{35}= &\, {} -\left( j_{11} j_{14}\right) ,~\\ j_{36}= &\, {} \left( j_{14} j_{29} - j_{23} j_{15}\right) ,\\ j_{37}= &\, {} \left( \frac{j_{14}}{\gamma _1^2}-1\right) ,~\\ j_{38}= &\, {} -\left( \frac{j_{14}}{\mu \gamma _2^2}\right) ,~\\ j_{39}= &\, {} \left( j_{15}-j_{14} j_{22}\right) ,\\ j_{40}= &\, {} \left( j_{16} j_{30}\right) ,~\\ j_{41}= &\, {} \left( j_{16} j_{31}\right) ,\\ j_{42}= &\, {} \left( j_{16} j_{33} -j_{32} j_{17}\right) ,\\ j_{43}= &\, {} \left( j_{16} j_{34}\right) ,\\ j_{44}= &\, {} \left( j_{16} j_{35}+ \frac{j_{32}}{\mu }\right) ,\\ j_{45}= &\, {} \left( j_{16} j_{36}- j_{18} j_{32} \right) ,\\ j_{46}= &\, {} \left( \gamma _2 j_{30}+\gamma _1 j_{32}\right) ,\\ j_{47}= &\, {} \left( \gamma _2 j_{31}+j_{32}(\mu - 1)\right), \end{aligned}$$
$$\begin{aligned} j_{48}= &\, {} \left( \gamma _2 j_{33}\right) ,\\ j_{49}= &\, {} \left( \gamma _2 j_{34}\right) ,\\ j_{50}= &\, {} \left( \gamma _2 j_{35}\right) ,\\ j_{51}= &\, {} \left( \gamma _2 j_{36}+j_{25} j_{32}\right) ,\\ j_{52}= &\, {} \left( j_{40} j_{47}-j_{41} j_{46}\right) ,\\ j_{53}= &\, {} \left( j_{42} j_{47}-j_{48} j_{41}\right) \\ j_{54}= &\, {} \left( j_{43} j_{47}-j_{49} j_{41}\right) ,\\ j_{55}= &\, {} \left( j_{44} j_{47}-j_{50} j_{41}\right) ,\\ j_{56}= &\, {} \left( j_{45} j_{47}-j_{51} j_{41}\right) ,\\ j_{57}= &\, {} \left( j_{52} j_{14}-j_{53} j_{13}\right) ,\\ j_{58}= &\, {} \left( j_{52} j_{37}-j_{54} j_{13}\right) ,\\ j_{59}= &\, {} \left( j_{52} j_{38}-j_{55} j_{13}\right) ,\\ j_{60}= &\, {} \left( j_{52} j_{39}-j_{56} j_{13}\right) ,\\ j_{61}= &\, {} -\left( \frac{j_{60}}{j_{57}}\right) ,\\ j_{62}= &\, {} -\left( \frac{j_{58}}{j_{57}}\right) ,\\ j_{63}= &\, {} -\left( \frac{j_{59}}{j_{57}}\right) ,\\ j_{64}= &\, {} -\left( \frac{\left( j_{14}j_{61}+j_{39}\right) }{j_{13}}\right) ,\\ j_{65}= &\, {} -\left( \frac{\left( j_{14}j_{62}+j_{37}\right) }{j_{13}}\right) ,\\ j_{66}= &\, {} -\left( \frac{\left( j_{14}j_{63}+j_{38}\right) }{j_{13}}\right) ,\\ j_{67}= &\, {} -\left( \frac{\left( j_{40}j_{64}+j_{42}j_{61}+j_{45}\right) }{j_{41}}\right) ,\\ j_{68}= &\, {} -\left( \frac{\left( j_{40}j_{65}+j_{42}j_{62}+j_{43}\right) }{j_{41}}\right) ,\\ j_{69}= &\, {} -\left( \frac{\left( j_{40}j_{66}+j_{42}j_{63}+j_{44}\right) }{j_{41}}\right), \end{aligned}$$
$$\begin{aligned} j_{70}= &\, {} \left( \mu j_{67} - j_{20}\right) ,\\ j_{71}= &\, {} \left( \mu j_{68} \right) ,\\ j_{72}= &\, {} \left( \mu j_{69} \right) ,\\ j_{73}= &\, {} \left( j_{61} - j_{22}\right) ,\\ j_{74}= &\, {} \left( j_{62} + \frac{1}{\gamma _1^2}\right) ,\\ j_{75}= &\, {} \left( j_{63} - \frac{1}{\mu \gamma _2^2}\right) ,\\ j_{76}= &\, {} -\left( \frac{j_{17}j_{61}+j_{18}}{j_{16}}\right) ,\\ j_{77}= &\, {} -\left( \frac{j_{17}j_{62}}{j_{16}}\right) ,\\ j_{78}= &\, {} -\left( \frac{j_{17}j_{63}-\frac{1}{\mu }}{j_{16}}\right) ,\\ j_{79}= &\, {} -\left( j_8 j_{67}+ j_9 j_{76} +j_{10} j_{61} +j_{12}\right) ,\\ j_{80}= &\, {} -\left( j_8 j_{68}+ j_9 j_{77} +j_{10} j_{62} \right) ,\\ j_{81}= &\, {} -\left( j_8 j_{69}+ j_9 j_{78} +j_{10} j_{63} +j_{11}\right) ,\\ j_{82}= &\, {} \left( -j_{73}+j_{79}+j_{61}-j_{19}\right) ,\\ j_{83}= &\, {} \left( -j_{74}+j_{80}+ j_{62}\right) ,\\ j_{84}= &\, {} \left( -j_{75}+j_{81}+j_{63}\right) ,\\ j_{85}= &\, {} j_{82}h_1+ j_{70} \frac{h_1^2}{2}+\frac{j_{64}}{\gamma _1}\left[ \cosh (\gamma _1 h_1)-1\right] \\&+\,\frac{j_{73}}{\gamma _1}\sinh (\gamma _1 h_1)+\frac{j_1 A_1}{m_1}\sinh (m_1 h_1)\\&+\,\frac{j_1B_1}{m_1}\left[ \cosh (m_1 h_1)-1\right] ,\end{aligned}$$
$$\begin{aligned} j_{86}= &\, {} \left( j_{83}h_1+ j_{71} \frac{h_1^2}{2}+\frac{j_{65}}{\gamma _1}\left[ \cosh (\gamma _1 h_1)-1\right] \right. \\&\left. +\,\frac{j_{74}}{\gamma _1}\sinh (\gamma _1 h_1)-\frac{h_1^3}{6}\right) ,\\ j_{87}= &\, {} \left( j_{84}h_1+ j_{72} \frac{h_1^2}{2}+\frac{j_{66}}{\gamma _1}\left[ \cosh (\gamma _1 h_1)-1\right] \right. \\&\left. +\,\frac{j_{75}}{\gamma _1}\sinh (\gamma _1 h_1)\right) ,\\ j_{88}= &\, {} \left( -j_{79}h_2 - j_{67} \frac{h_2^2}{2}+\frac{j_{76}}{\gamma _2}\left[ 1-\cosh (\gamma _2 h_2)\right] \right. \\&\left. -\frac{j_{61}}{\gamma _2}\sinh (\gamma _2 h_2)-\frac{j_2 A_2}{m_2}\sinh (m_2 h_2) \right. \\&\left. +\,\frac{j_2 B_2}{m_2}\left[ 1-\cosh (m_2 h_2)\right] \right), \end{aligned}$$
$$\begin{aligned} j_{89}= &\, {} \left( -j_{80}h_2 - j_{68} \frac{h_2^2}{2}+\frac{j_{77}}{\gamma _2}\left[ 1-\cosh (\gamma _2 h_2)\right] \right. \\&\left. -\,\frac{j_{62}}{\gamma _2}\sinh (\gamma _2 h_2)\right) ,\\ j_{90}= &\, {} \left( -j_{81}h_2 - j_{69} \frac{h_2^2}{2}+\frac{j_{78}}{\gamma _2}\left[ 1-\cosh (\gamma _2 h_2)\right] \right. \\&\left. -\,\frac{j_{63}}{\gamma _2}\sinh (\gamma _2 h_2)+\frac{h_2^3}{6 \mu }\right) ,\\ G_1= &\, {} \left( \frac{j_{90}\left( q_1 - j_{85}\right) -\left( q_2 - j_{88}\right) j_{87}}{j_{90}j_{86}-j_{87}j_{89}}\right) ,\\ G_2= &\, {} \frac{\left( q_2-j_{88}-j_{89}G_1\right) }{j_{90}},\\ j_{91}= &\, {} \left( -{{Br}}_1\left[ \frac{c_2^2}{2}-\frac{j_1^2 m_1^2}{4}\left( A_1^2-B_1^2\right) +\left( \frac{j_1^2 A_1^2 m_1^4}{4 \gamma _1^2}\right) \right. \right. \\&\left. \left. -\left( \frac{j_1^2 B_1^2 m_1^4}{4 \gamma _1^2}+\frac{G_1^2}{2\gamma _1^2}\right) \right] -\frac{S_1}{2}\right) ,\\ j_{92}= &\, {} \left( \frac{c_2G_1{{Br}}_1}{3}\right) ,\\ j_{93}= &\, {} -\left( \frac{G_1^2 {{Br}}_1}{12}\right) ,\\ j_{94}= &\, {} -{{Br}}_1\left( \frac{c_3^2}{4}+\frac{c_4^2}{4}\right) ,\\ j_{95}= &\, {} -{{Br}}_1\left( \frac{c_3 c_4}{2}\right) ,\\ j_{96}= &\, {} -{{Br}}_1\left( \frac{j_1^2 A_1^2}{8}+\frac{j_1^2 B_1^2}{8}+\frac{j_1^2 A_1^2 m_1^2}{8\gamma _1^2}+\frac{j_1^2 B_1^2 m_1^2}{8 \gamma _1^2}\right) ,\\ j_{97}= &\, {} -{{Br}}_1\left( \frac{j_1^2 A_1 B_1}{4}+\frac{j_1^2 A_1 B_1 m_1^2}{4 \gamma _1^2}\right) ,\\ j_{98}= &\, {} -{{Br}}_1\left( 2\left( \frac{c_3c_4}{\gamma _1}-\frac{c_4 G_1}{\gamma _1^2}\right) + \frac{4 c_4 G_1}{\gamma _1^2}\right), \end{aligned}$$
$$\begin{aligned}j_{99}= &\, {} -{{Br}}_1\left( 2\left( \frac{c_2c_4}{\gamma _1}-\frac{c_3 G_1}{\gamma _1^2}\right) + \frac{4 c_3 G_1}{\gamma _1^2}\right) ,\\ j_{100}= &\, {} -{{Br}}_1\left( \frac{2}{m_1}\left( c_2 j_1 B_1-\frac{j_1A_1m_1G_1}{\gamma _1^2}\right) +\frac{4j_1A_1G_1}{m_1^2}\right) ,\\ j_{101}= &\, {} -{{Br}}_1\left( \frac{2}{m_1}\left( c_2 j_1 A_1-\frac{j_1B_1m_1G_1}{\gamma _1^2}\right) +\frac{4j_1B_1G_1}{m_1^2}\right) ,\\ j_{102}= &\, {} -{{Br}}_1\left( (c_3\gamma _1j_1A_1m_1+c_4j_1B_1m_1^2)\right. \\&\left. +\,\frac{1}{(m_1+\gamma _1)^2}(c_4\gamma _1j_1B_1m_1+c_3j_1A_1m_1^2)\right) ,\\ j_{103}= &\, {} -{{Br}}_1\left( (c_3\gamma _1j_1A_1m_1+c_4j_1B_1m_1^2)\right. \\&\left. -\,\frac{1}{(m_1-\gamma _1)^2}(c_4\gamma _1j_1B_1m_1+c_3j_1A_1m_1^2)\right), \end{aligned}$$
$$\begin{aligned} j_{104}= &\, {} -{{Br}}_1\left( (c_3\gamma _1j_1B_1m_1+c_4j_1A_1m_1^2)\right. \\&\left. +\,\frac{1}{(m_1+\gamma _1)^2}(c_4\gamma _1j_1A_1m_1+c_3j_1B_1m_1^2)\right) ,\\ j_{105}= &\, {} -{{Br}}_1\left( (c_3\gamma _1j_1B_1m_1+c_4j_1A_1m_1^2)\right. \\&\left. -\,\frac{1}{(m_1-\gamma _1)^2}(c_4\gamma _1j_1A_1m_1+c_3j_1B_1m_1^2)\right) ,\\ j_{106}= &\, {} {{Br}}_1\left( \frac{2 j_1 A_1 G_1}{m_1}\right) ,\\ j_{107}= &\, {} {{Br}}_1\left( \frac{2 j_1 B_1 G_1}{m_1}\right) ,\\ j_{107a}= &\, {} {{Br}}_1\left( \frac{2 c_4 G_1}{\gamma _1}\right) ,\\ j_{107b}= &\, {} {{Br}}_1\left( \frac{2 c_3 G_1}{\gamma _1}\right) ,\\ j_{108}= &\, {} \left( -{{Br}}_2\left[ \frac{c_6^2}{2}-\frac{j_2^2 m_2^2}{4}\left( A_2^2-B_2^2\right) +\left( \frac{j_2^2 m_2^4}{4 \gamma _2^2}\right) \left( A_2^2-B_2^2\right) \right. \right. \\&\left. \left. +\frac{G_2^2}{2\mu ^2 \gamma _2^2}\right] -\frac{S_2}{2}\right) ,\\ j_{109}= &\, {} \left( \frac{c_6G_2{{Br}}_2}{3 \mu }\right), \end{aligned}$$
$$\begin{aligned}j_{110}= &\, {} -\left( \frac{G_1^2 {{Br}}_1}{12}\right) ,\\ j_{111}= &\, {} -{{Br}}_2\left( \frac{c_7^2}{4}+\frac{c_8^2}{4}\right) ,\\ j_{112}= &\, {} -{{Br}}_2\left( \frac{c_7 c_8}{2}\right) ,\\ j_{113}= &\, {} -{{Br}}_2\left( \frac{j_2^2 A_2^2}{8}+\frac{j_2^2 B_2^2}{8}+\frac{j_2^2 A_2^2 m_2^2}{8\gamma _2^2}+\frac{j_2^2 B_2^2 m_2^2}{8 \gamma _2^2}\right) ,\\ j_{114}= &\, {} -{{Br}}_2\left( \frac{j_2^2 A_2 B_2}{4}+\frac{j_2^2 A_2 B_2 m_2^2}{4 \gamma _2^2}\right) ,\\ j_{115}= &\, {} -{{Br}}_2\left( 2\left( \frac{c_6c_7}{\gamma _2}-\frac{c_8 G_2}{\mu \gamma _2^2}\right) + \frac{4 c_8 G_2}{\mu \gamma _2^2}\right),\\j_{116}= &\, {} -{{Br}}_2\left( 2\left( \frac{c_6c_7}{\gamma _2}-\frac{c_7 G_2}{\mu \gamma _2^2}\right) + \frac{4 c_7 G_2}{\mu \gamma _2^2}\right) ,\\ j_{117}= &\, {} -{{Br}}_2\left( \frac{2}{m_2}\left( c_6 j_2 B_2-\frac{j_2A_2m_2G_2}{\mu \gamma _2^2}\right) +\frac{4j_2A_2G_2}{\mu m_2^2}\right), \end{aligned}$$
$$\begin{aligned} j_{118}= &\, {} -{{Br}}_2\left( \frac{2}{m_2}\left( c_2 j_2 A_2-\frac{j_2B_2m_2G_2}{\gamma _2^2}\right) +\frac{4j_2B_2G_2}{\mu m_2^2}\right) ,\\ j_{119}= &\, {} -{{Br}}_2\left( (c_7\gamma _2j_2A_2m_2+c_8j_2B_2m_2^2)\right. \\&\left. +\,\frac{1}{(m_2+\gamma _2)^2}(c_8\gamma _2j_2B_2m_2+c_7j_2A_2m_2^2)\right) ,\\ j_{120}= &\, {} -{{Br}}_2\left( (c_7\gamma _2j_2A_2m_2+c_8j_2B_2m_2^2)\right. \\&\left. -\,\frac{1}{(m_2-\gamma _2)^2}(c_8\gamma _2j_2B_2m_2+c_7j_2A_2m_2^2)\right) ,\\ j_{121}= &\, {} -{{Br}}_2\left( (c_7\gamma _2j_2B_2m_2+c_8j_2A_2m_2^2)\right. \\&\left. +\,\frac{1}{(m_2+\gamma _2)^2}(c_8\gamma _2j_2A_2m_2+c_7j_2B_2m_2^2)\right) ,\\ j_{122}= &\, {} -{{Br}}_2\left( (c_7\gamma _2j_2B_2m_2+c_8j_2A_2m_2^2)\right. \\&\left. -\,\frac{1}{(m_2-\gamma _2)^2}(c_8\gamma _2j_2A_2m_2+c_7j_2B_2m_2^2)\right) ,\\ j_{123}= &\, {} {{Br}}_2\left( \frac{2 j_2 A_2 G_2}{\mu m_2}\right) ,\\ j_{124}= &\, {} {{Br}}_2\left( \frac{2 j_2 B_2 G_2}{\mu m_2}\right) ,\\ j_{124a}= &\, {} {{Br}}_2\left( \frac{2 c_8 G_2}{\mu \gamma _2}\right),\end{aligned}$$
$$\begin{aligned} j_{124b}= &\, {} {{Br}}_2\left( \frac{2 c_7 G_2}{\mu \gamma _2}\right) ,\\ j_{125}= &\, {} -\left[ j_{91}\left( h_1^2+2 st_1 h_1\right) +j_{92}\left( h_1^3+3 st_1 h_1^2\right) \right. \\&\left. +\,\,j_{93}\left( h_1^4+4 st_1 h_1^3\right) +j_{94}\left( \cosh (2 \gamma _1 h_1)\right. \right. \\&\left. \left. +\,2st_1 \gamma _1 \sinh (2 \gamma _1 h_1)\right) +j_{95}\left( \sinh (2 \gamma _1 h_1)\right. \right. \\&\left. \left. +\,2st_1 \gamma _1 \cosh (2 \gamma _1 h_1)\right) +j_{96}\left( \cosh (2 m_1 h_1)\right. \right. \\&\left. \left. +\,2st_1 m_1 \sinh (2 m_1 h_1)\right) +j_{97}\left( \sinh (2 m_1 h_1) \right. \right. \\&\left. \left. +\,2st_1 m_1 \cosh (2 m_1 h_1)\right) + j_{98}\left( \cosh ( \gamma _1 h_1)\right. \right. \\&\left. \left. +st_1 \gamma _1 \sinh ( \gamma _1 h_1)\right) +j_{99}\left( \sinh ( \gamma _1 h_1)\right. \right. \\&\left. \left. +\,st_1 \gamma _1 \cosh ( \gamma _1 h_1)\right) +j_{100}\left( \cosh ( m_1 h_1)\right. \right. \\&\left. \left. +\,st_1 m_1 \sinh ( m_1 h_1)\right) +j_{101}\left( \sinh ( \gamma _1 h_1)\right. \right. \\&\left. \left. +\,st_1 m_1 \cosh ( m_1 h_1)\right) +j_{102}\left( \sinh ((m_1+ \gamma _1) h_1) \right. \right. \\&\left. \left. +\,st_1 (\gamma _1+h_1) \cosh ((m_1+ \gamma _1) h_1)\right) \right. \\&\left. +j_{103}\left( \sinh ((m_1- \gamma _1) h_1)\right. \right. \\&\left. \left. +\,st_1 (\gamma _1-h_1) \cosh ((m_1- \gamma _1) h_1)\right) \right. \\&\left. +j_{104}\left( \cosh ((m_1+ \gamma _1) h_1)\right. \right. \\&\left. \left. +\,st_1 (\gamma _1+h_1) \sinh ((m_1+ \gamma _1) h_1)\right) \right. \\&\left. +\,j_{105}\left( \cosh ((m_1- \gamma _1) h_1)\right. \right. \\&\left. \left. +\,st_1 (\gamma _1-h_1) \sinh ((m_1- \gamma _1) h_1)\right) \right. \\&\left. +j_{106}\left( (h_1+ st_1) \sinh (m_1 h_1)\right. \right. \\&\left. \left. +\,st_1 h_1 m_1 \cosh (m_1 h_1)\right) +j_{107}\left( (h_1+ st_1) \cosh (m_1 h_1)\right. \right. \\&\left. \left. +\,st_1 h_1 m_1 \sinh (m_1 h_1)\right) +j_{107a}\left( (h_1+ st_1) \sinh (\gamma _1 h_1)\right. \right. \\&\left. \left. +\,st_1 h_1 \gamma _1 \cosh (\gamma _1 h_1)\right) +j_{107b}\left( (h_1+ st_1) \cosh (\gamma _1 h_1)\right. \right. \\&\left. \left. +\,st_1 h_1 \gamma _1 \cosh (\gamma _1 h_1)\right) \right],\end{aligned}$$
$$\begin{aligned}j_{126}= &\, {} -\left[ j_{108}\left( h_2^2+2 st_2 h_2\right) +j_{109}\left( h_2^3+3 st_2 h_2^2\right) \right. \\&\left. +\,\,j_{110}\left( h_2^4+4 st_2 h_2^3\right) +j_{111}\left( \cosh (2 \gamma _2 h_2)\right. \right. \\&\left. \left. +\,2st_2 \gamma _2 \sinh (2 \gamma _2 h_2)\right) +j_{112}\left( \sinh (2 \gamma _2 h_2)\right. \right. \\&\left. \left. +\,2st_2 \gamma _2 \cosh (2 \gamma _2 h_2)\right) +j_{113}\left( \cosh (2 m_2 h_2)\right. \right. \\&\left. \left. +\,2st_2 m_2 \sinh (2 m_2 h_2)\right) ++j_{114}\left( \sinh (2 m_2 h_2)\right. \right. \\&\left. \left. +\,2st_2 m_2 \cosh (2 m_2 h_2)\right) + j_{115}\left( \cosh ( \gamma _2 h_2)\right. \right. \\&\left. \left. +\,st_2 \gamma _2 \sinh ( \gamma _2 h_2)\right) +j_{116}\left( \sinh ( \gamma _2 h_2)\right. \right. \\&\left. \left. +\,st_2 \gamma _2 \cosh ( \gamma _2 h_2)\right) +j_{117}\left( \cosh ( m_2 h_2)\right. \right. \\&\left. \left. +st_2 m_2 \sinh ( m_2 h_2)\right) +j_{118}\left( \sinh ( \gamma _2 h_2)\right. \right. \\&\left. \left. +\,st_2 m_1 \cosh ( m_2 h_2)\right) +j_{119}\left( \sinh ((m_2+ \gamma _1) h_2)\right. \right. \\&\left. \left. +\,st_2 (\gamma _1+h_2) \cosh ((m_1+ \gamma _2) h_2)\right) \right. \\&\left. +\,j_{120}\left( \sinh ((m_2- \gamma _2) h_2)\right. \right. \\&\left. \left. +\,st_2 (\gamma _2-h_2) \cosh ((m_2- \gamma _1) h_2)\right) \right. \\&\left. +\,j_{121}\left( \cosh ((m_2+ \gamma _2) h_2)\right. \right. \\&\left. \left. +\,st_2 (\gamma _2+h_2) \sinh ((m_2+ \gamma _1) h_2)\right) \right. \\&\left. +\,j_{122}\left( \cosh ((m_2- \gamma _2) h_2)\right. \right. \\&\left. \left. +\,st_2 (\gamma _2-h_2) \sinh ((m_2- \gamma _1) h_2)\right) \right. \\&\left. +\,j_{123}\left( (h_2+ st_2) \sinh (m_2 h_2) \right. \right. \\&\left. \left. +\,st_2 h_2 m_2 \cosh (m_2 h_2)\right) +j_{124}\left( (h_2+ st_2) \cosh (m_2 h_2)\right. \right. \\&\left. \left. +\,st_2 h_2 m_2 \sinh (m_2 h_2)\right) +j_{124a}\left( (h_2+ st_2) \sinh (\gamma _2 h_2)\right. \right. \\&\left. \left. +\,st_2 h_2 \gamma _2 \cosh (\gamma _2 h_2)\right) +j_{124b}\left( (h_2+ st_2) \cosh (\gamma _2 h_2)\right. \right. \\&\left. \left. +\,st_2 h_2 \gamma _2 \cosh (\gamma _2 h_2)\right) \right], \end{aligned}$$
$$\begin{aligned} j_{127}= &\, {} \frac{K_{\mathrm{R}}}{K_{\mathrm{R}}+N_{\mathrm{R}}}\left( j_{112}2\gamma _2 + j_{114} 2m_2 +j_{116} \gamma _2 +j_{118} m_2 \right. \\&\left. +\,j_{119} (m_2+ \gamma _2)+ j_{120} (m_2 - \gamma _2) + j_{124} + j_{124a}\right) \\&-\,\frac{1}{1+N_{\mathrm{R}}} \left( j_{95} 2 \gamma _1 + j_{97} 2 m_1 + j_{99} \gamma _1 j_{101} m_1 + j_{102} (m_1+\gamma _1)\right. \\&\left. +\, j_{103} (m_1-\gamma _1) + j_{107} + j_{107b}\right), \end{aligned}$$
$$\begin{aligned} j_{128}= &\, {} \frac{K_{\mathrm{R}}}{K_{\mathrm{R}}+N_{\mathrm{R}}}\left( j_{111}+ j_{113} +j_{115} +j_{117} + j_{121} + j_{122}\right) \\&-\,\frac{K_{\mathrm{R}}}{K_R+N_{\mathrm{R}}} \left( j_{94} + j_{96} + j_{99} + j_{98} + j_{100}+ j_{104} + j_{105}\right) ,\\ j_{129}= &\, {} \left( \frac{K_{\mathrm{R}}}{1+N_{\mathrm{R}}}\right) ,\\ j_{130}= &\, {} \left( \frac{K_{\mathrm{R}}}{K_{\mathrm{R}}+N_{\mathrm{R}}}\right) ,\\ j_{131}= &\, {} \left( \frac{1}{1+N_{\mathrm{R}}}\right) ,\\ j_{132}= &\, {} j_{129}\left( h_1+st_1\right) ,\\ j_{133}= &\, {} \left( j_{129} j_{125}- j_{128}\right) ,\\ j_{134}= &\, {} \left( j_{130} (h_2 - st_2)\right) ,\\ j_{135}= &\, {} \left( j_{133} - j_{126} j_{130}\right) ,\\ c_{1}= &\, {} j_{82}+j_{83}G_1+j_{84}G_2,\\ c_{2}= &\, {} j_{70}+j_{71}G_1+j_{72}G_2,\\ c_{3}= &\, {} j_{64}+j_{65}G_1+j_{66}G_2,\\ c_{4}= &\, {} j_{73}+j_{74}G_1+j_{75}G_2,\\ c_{5}= &\, {} j_{79}+j_{80}G_1+j_{81}G_2,\\ c_{6}= &\, {} j_{67}+j_{68}G_1+j_{69}G_2,\\ c_{7}= &\, {} j_{76}+j_{77}G_1+j_{78}G_2,\\ c_{8}= &\, {} j_{61}+j_{62}G_1+j_{63}G_2,\\ cc_1= &\, {} j_{127}+j_{130} cc_3,\\ cc_2= &\, {} j_{125}-cc_1 (h_1+st_1), \\ cc_3= &\, {} \frac{j_{135}j_{131}-j_{127}j_{132}}{j_{130}j_{132}+j_{134}j_{131}},\\ cc_4= &\, {} j_{126}-cc_3 (h_2-st_2).\end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjit, N.K., Shit, G.C. & Tripathi, D. Electrothermal analysis in two-layered couple stress fluid flow in an asymmetric microchannel via peristaltic pumping. J Therm Anal Calorim 144, 1325–1342 (2021). https://doi.org/10.1007/s10973-020-10380-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10380-z

Keywords

Navigation