Skip to main content
Log in

Investigations of thermal, optical and electrical properties of Se85In15−xBix glasses and thin films

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In our present research work, we have investigated the different thermal, optical and electrical properties of Se85In15−xBix alloys in bulk and thin film form. Differential Scanning Calorimeter (DSC) was operated at different heating rates of 5, 10, 15, 20 and 25 K min−1. The melting temperature (Tm), peak crystallization (Tp), on-set crystallization (Tc) and glass transition (Tg) temperature were evaluated from DSC curves. The value of Tg, Tc and Tp was found to increase with the heating rate. Depending on these parameters, we have estimated the different thermal stability parameters. The activation energy of crystallization (ΔEc) and activation energy of glass transition (ΔEg) was evaluated by different methods and found to be in good agreement with each other. Thermal evaporation technique has been used for preparation of Se85In15−xBix thin films of thickness 500 nm. The X-Ray Diffraction studies confirm amorphous texture of as-prepared thin films. The morphology of surface was examined by Field Emission Scanning Electron Microscope. It has been observed from FESEM studies that by increasing the Bi content the cluster of particles increase, which indicate good alloying of Bi in Se85In15−xBix thin films. Different optical parameters have been calculated by optical absorption measurements of Se85In15−xBix thin films in wavelength range 400–1100 nm. With the increase in incident photon energy, absorption coefficient (α) and extinction coefficient (k) are found to be increase. The optical absorption obeys the indirect transition rule and with increasing Bi concentration the optical band gap decreases. We have also evaluated the steepness parameter (σ) and Urbach energy (Et) values from optical studies. In electrical studies, we have performed the dc-conductivity measurement at different temperature from 298 to 403 K. From these measurements, we have calculated the different electrical parameters like activation energy (ΔEc), pre-exponential factor, free carrier concentration density, mobility, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Rajagopalan T, Reddy GB. Study of surface topography and optical properties of Ge15Bi38Se47 films. J Mater Sci Mater Electron. 1998;9:133–7.

    Article  CAS  Google Scholar 

  2. Cofmenero J, Barandiran JM. Crystallization of Al23Te77 glasses. J Non-Cryst Solids. 1979;30:263–71.

    Article  Google Scholar 

  3. Savage JA. Optical properties of chalcogenide glasses. J Non-Cryst Solids. 1982;47:101–15.

    Article  CAS  Google Scholar 

  4. Alvi MA, Khan SA, Al-Ghamdi AA. Photo-induced effects on electrical properties of Ga15Se81Ag4 chalcogenide thin film. J Lumin. 2012;132(5):1237–42.

    Article  CAS  Google Scholar 

  5. Al-Ghamdi AA, Khan SA, Al-Heniti S, Al-Agel FA, Al-Harbi T, Zulfequer M. Effects of laser irradiation on optical properties of amorphous and annealed Ga15Se81In4 and Ga15Se79In6 chalcogenide thin film. J Alloys Compd. 2010;505(1):229–34.

    Article  CAS  Google Scholar 

  6. Nishi J, Morimolo S, Ingawa I, Lizuka R, Yamashta T. Recent advances and trends in chalcogenide glass fiber technology: a review. J. Non-Cryst Solid. 1992;140:199–208.

    Article  Google Scholar 

  7. Grozdanov I, Barlingay CK, Dey SK, Ristov M, Najdoski M. Experimental study of the copper thiosulfate system with respect to thin-film deposition. Thin Solids Films. 1994;250:67–71.

    Article  CAS  Google Scholar 

  8. Frumar M, Frumarava B, Nemec P, Wagner T, Jedelsky J, Hrdlicka M. Thin chalcogenide films prepared by pulsed laser deposition new amorphous materials applicable in optoelectronics and chemical sensors. J. Non-Cryst Solids. 2006;352:544–61.

    Article  CAS  Google Scholar 

  9. Ovshinisky SR, Fritzsche H. Amorphous semiconductors for switching, memory and imaging applications. IEEE Trans Electron. 1973;20:91–105.

    Article  Google Scholar 

  10. Tripathi RP, Akhtar MS, Alvi MA, Khan SA. A study on photo-induced crystallization in Ga10Se78Tl12 films. J Mater Sci Mater Electron. 2015;26:6206–11.

    Article  CAS  Google Scholar 

  11. Srivastava A, Tripathi RP, Akhtar MS, Khan SA. Studies on phase change Ge15Se77Sb8 thin films by laser irradiation. J Mater Sci Mater Electron. 2016;27:2426–9.

    Article  CAS  Google Scholar 

  12. Khan SA, Tiwari G, Tripathi RP, Alvi MA, Khan ZH, Al-Agel FA. Structural, optical and electrical characterization of polycrystalline Ga15Te85−XZnX nano-structured chalcogenide thin films. Adv Sci Lett. 2014;20:1715–8.

    Article  Google Scholar 

  13. Jain PK, Rathore KS, Sexena NS. Structural characterization and phase transformation kinetics of Se58Ge42−xPbx chalcogenide glasses. J Non-Cryst Solids. 2009;355:1274–80.

    Article  CAS  Google Scholar 

  14. Cohen MH, Grest GS. Liquid-glass transition: dependency of glass transition on heating and cooling rates. Phys Rev B. 1980;21:4113–7.

    Article  Google Scholar 

  15. Al-Agel FA, Al-Arfaj EA, Al-Marzouki FM, Khan SA, Al-Ghamdi AA. Study of phase separation in Ga25Se75−xTex chalcogenide thin films. Prog Nat Sci Mater Int. 2013;23(2):139–44.

    Article  Google Scholar 

  16. Altounian Z, Strom-Oisen JO. In: RD Shull, A Joshi, editors. Thermal analysis in metallurgy. The Minerals, Metals and Materials Society, Warrendale; 1992. p. 155.

  17. Henderson DW. Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids. J. Non-Cryst. Solids. 1979;30:301–15.

    Article  CAS  Google Scholar 

  18. Assaker IB, Gannouni M, Naceur JB, Almessiere MA, Al-Otaibi AL, Ghrib T, Shen S, Chtourou R. Electrodeposited ZnIn2S4 onto TiO2 thin films for semiconductor-sensitized photocatalytic and photoelectrochemical applications. Appl Surf Sci. 2015;351:927–34.

    Article  CAS  Google Scholar 

  19. Lucas P, Coleman GJ, Jiang S, Luo T, Yang Z. Chalcogenide glass fibers: optical window tailoring and suitability for bio-chemical sensing. Opt Mater. 2015;47:530–6.

    Article  CAS  Google Scholar 

  20. Chang CC, Chen TK, Lee WC, Lin PH, Wang MJ, Wen YC, Wu PM, Wu MK. Superconductivity in Fe-chalcogenides. Physica C. 2015;514:423–34.

    Article  CAS  Google Scholar 

  21. Li L, Yin H, Wang Y, Zheng J, Chen G. Study on crystallization behaviour of novel silver chloride based chalcogenide glasses. J Alloys Compd. 2017;706:48–55.

    Article  CAS  Google Scholar 

  22. Fernandes BJ, Naresh N, Ramesh K, Sridharan K, Udayashankar NK. Crystallization kinetics of Sn doped Ge20Te80-xSnx chalcogenide glassy alloys. J Alloys Compd. 2017;721:674–82.

    Article  CAS  Google Scholar 

  23. Chandel N, Mehta N. Thermal analysis for study of influence of Cd, In and Sb on glass transition kinetics in glassy Se80Te20 alloy using DSC technique. J Therm Anal Calorim. 2014;15(2):1273–8.

    Article  CAS  Google Scholar 

  24. Mahmoud AZ, Mohamed M, Moustafa S, Abdelraheem AM, Abdel-Rahim MA. Study of non-isothermal crystallization kinetics of Ge20Se70Sn10 chalcogenide glass. J Therm Anal Calorim. 2018;131:2433–42.

    Article  CAS  Google Scholar 

  25. Atyia HE, Hegab NA, Farid AS. Glass transition kinetics aspects of amorphous Se60Ge15As25 and Se60Ge15Sn25 compositions. J Therm Anal Calorim. 2018;131:1793–802.

    Article  CAS  Google Scholar 

  26. Kumar A, Fouad SS, El-Bana MS, Mehta N. Thermal analysis of cadmium addition on the glass transition and crystallization kinetics of Se–Te–Sn glassy network. J Therm Anal Calorim. 2018;131:2491–501.

    Article  CAS  Google Scholar 

  27. Hosseinkhani A, Tavoosi M, Ghasemi A. The optical, structural and thermal optimizations of Ge-As-Se-S-Te glasses. Infrared Phys Technol. 2017;85:421–30.

    Article  CAS  Google Scholar 

  28. Kalra G, Upadhyay M, Abhaya S, Murugavel S, Amarendra G. Thermal, structural and defect studies on Pb modified GeSe glasses. J Non-Cryst Solids. 2017;460:146–52.

    Article  CAS  Google Scholar 

  29. Kumar S, Singh K. Glass transition and crystallization kinetics of Se98−xCd2Inx glassy alloys. J Therm Anal Calorim. 2016;124:675–82.

    Article  CAS  Google Scholar 

  30. Rana A, Singh BP, Sharma R. Physical and optical properties of thermally deposited Ge-S-Ga thin films. J Non-Cryst Solids. 2018;482:93–9.

    Article  CAS  Google Scholar 

  31. Dongol M, Elhady AF, Ebied MS, Abuelwafa AA. Impact of sulphur content on structural and optical properties of Ge20Se80-xSx chalcogenide glasses thin films. Optic Mater. 2018;78:266–72.

    Article  CAS  Google Scholar 

  32. Aparimita A, Behera M, Sripan C, Ganesan R, Naik R. Effect of Bi addition on the optical properties of Ge30Se70-xBix thin films. J Alloys Compd. 2018;739:997–1004.

    Article  CAS  Google Scholar 

  33. Adam AM, Lilov E, Lilova V, Petkov P. Characterization and optical properties of bismuth chalcogenide prepared by pulsed laser deposition technique. Mater Sci Semicond Process. 2017;57:210–9.

    Article  CAS  Google Scholar 

  34. Mansour BA, Zawawi IKEL, Elsayed-Ali HE, Hameed TA. Preperation and characterization of optical and electrical properties of copper selenide sulphide polycrystalline thin films. J Alloys Compd. 2018;740:1125–32.

    Article  CAS  Google Scholar 

  35. Tanwar N, Saraswat VK. A study of kinetics of phase transformation of Ge10Se75Sn15 chalcogenide glass. J Non-Cryst Solids. 2014;394–395:1–5.

    Article  CAS  Google Scholar 

  36. Singh AK. Crystallization kinetics of Se-Zn-Sb nano composites chalcogenide alloys. J Alloys Compd. 2013;552:166–72.

    Article  CAS  Google Scholar 

  37. Slang S, Janicek P, Palka K, Loghina L, Vlcek M. Optical properties and surface structuring of Ge20Sb5S75 amorphous chalcogenide thin films deposited by spin-coating and vacuum thermal evaporation. Mater Chem Phys. 2018;203:310–8.

    Article  CAS  Google Scholar 

  38. Gayathri AG, Sangeetha BG, Joseph CM. Optical studied on vacuum evaporated pentacene thin films on glass substrates. Mater Today Proc. 2017;4:584–9.

    Article  Google Scholar 

  39. Kumar A, Mishra R, Tripathi SK. Effect of partial crystallization on the photoconductivity behaviour of amorphous thin films of Se75Te25. Semicond Sci Technol. 1989;4:1151–5.

    Article  CAS  Google Scholar 

  40. Tripathi SK, Gupta S, Mustafa FI, Goyal N, Saini GSS. Laser induced changes on a-Ga50Se50 thin films. J Phys D. 2009;42:185404.

    Article  CAS  Google Scholar 

  41. Shpotyuk Y, Boussard-Pledel C, Nazabal V, Chahal R, Ari J, Pavlyk B, Cebulski J, Doualan JL, Bureau B. Ga-modified As2Se3Te glasses for active applications in IR photonics. Opt Mater. 2015;46:228–32.

    Article  CAS  Google Scholar 

  42. Josta S, Hergerta F, Hocka R, Schulzeb J, Kirbsb A, Voßb T, Purwins M. The formation of CuInSe2 thin film solar cell absorbers from electroplated precursors with varying selenium content. Solar Energy Mater Solids Cells. 2007;91:1669.

    Article  CAS  Google Scholar 

  43. Ruck M, Locherer F. Reprint of “Coordination chemistry of homoatomic ligands of bismuth, selenium and tellurium”. Coord Chem Rev. 2015;297–298:208–17.

    Article  CAS  Google Scholar 

  44. Abkowitz M. Relaxation induced changes in electrical behaviour of glassy chalcogenide semiconductors. Polym Eng Sci. 1984;24:1149–54.

    Article  CAS  Google Scholar 

  45. Al-Agel FA, Al-Arfaj EA, Al-Marzouki FM, Khan SA, Khan ZH, Al-Ghamdi AA. Phase transformation kinetics and optical properties of Ga-Se-Sb phase-change thin films. Mater Sci Semicond Process. 2013;16:884–92.

    Article  CAS  Google Scholar 

  46. Ligero RA, Vazquez J, Villares P, Jimenez-Garay R. Crystallization kinetics in As-Se-Te system. Thermochim Acta. 1990;162:427–34.

    Article  CAS  Google Scholar 

  47. Lasocka M. The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15. Mater Sci Eng. 1976;23:173–7.

    Article  CAS  Google Scholar 

  48. Nidhi AV, Modgil V, Rangra VS. Effect of Sb substitution on thermal behaviour of Te-Se-Ge glassy system. J Therm Anal Calorim. 2015;121:559–65.

    Article  CAS  Google Scholar 

  49. Muiva CM, Sathiaraj ST, Mwabora JM. Crystallisation kinetics, glass forming ability and thermal stability in glassy Se100−xInx chalcogenide alloys. J Non-Cryst Solids. 2011;357(22–23):3726–33.

    Article  CAS  Google Scholar 

  50. Vaney JB, Piarristeguy A, Pradel A, Alleno E, Lenoir B, Candolfi C. Thermal stability and thermoelectric properties of CuxAs40−xTe60−ySey semiconducting glasses. J Solid State Chem. 2013;203:212–7.

    Article  CAS  Google Scholar 

  51. Soliman AA. Thermal stability of Cu0.3(SSe20)0.7 chalcogenide glass by differential scanning calorimetry. Thermochim Acta. 2004;423(1–2):71–6.

    Article  CAS  Google Scholar 

  52. Dietzel A. Glass structure and glass properties. Glasstech Ber. 1968;22:41–8.

    Google Scholar 

  53. Hruby A. Evaluation of glass-forming tendency by means of DTA. Czech J Phys B. 1972;22:1187–93.

    Article  CAS  Google Scholar 

  54. Saad M, Poulain M. Glass forming ability criterion. Mater Sci Forum. 1987;19(20):11–8.

    Article  Google Scholar 

  55. Sakka S, Mackenzie JD. Relation between apparent glass transition temperature and liquids temperature for inorganic glasses. J Non-Cryst Solids. 1971;6:145–62.

    Article  CAS  Google Scholar 

  56. Moynihan CT, Easteal AJ, Wilder J, Tucker J. Dependence of the glass transition temperature on heating and cooling rate. J Phys Chem. 1974;78:2673–7.

    Article  CAS  Google Scholar 

  57. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bureau Standards. 1956;57:217–21.

    Article  CAS  Google Scholar 

  58. Abdel Rahim MA, Abdel-Latief AY, Soltan AS, El-Oyoun MA. Crystallization kinetics of overlapping phases in Cu6Ge14Te80 chalcogenide glass. Physica B. 2002;322(3):252–61.

    Article  CAS  Google Scholar 

  59. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  60. Khan SA, Al-Agel FA, Faidah AS, Yaghmour SJ, Al-Gahamdi AA. Characterization of Se88Te12 nanostructured chalcogenide prepared by ball milling. Mater Lett. 2010;64:1391–3.

    Article  CAS  Google Scholar 

  61. El-Seebaii AA, Khan SA, Al-Marzouki FM, Faidah AS, Al-Ghamdi AA. Role of heat treatement on structural and optical properties of thermally evaporated Ga10Se81Pb9 chalcogenide thin films. J Lumin. 2012;132(8):2082.

    Article  CAS  Google Scholar 

  62. Lal JK, Khan SA, Al-Gahamdi AA, Khan ZH. Characterisation of amorphous Se97Te3 nanoparticles prepared by ball milling. Int J Nanomanf. 2009;4:208–18.

    Article  CAS  Google Scholar 

  63. Tauc J. In: Tauc J, editor. Amorphous and liquid semiconductors. New York: Plenum Press; 1959. p. 159.

    Google Scholar 

  64. Urbach F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys Rev. 1953;92:1324.

    Article  CAS  Google Scholar 

  65. Sowjanya V, Bangera KV, Shivakumar GK. Effect of substrate temperature and thickness on the thermoelectrical properties of In2Te3 thin films. J Alloys Compd. 2017;715:224–9.

    Article  CAS  Google Scholar 

  66. Tripathi RP, Singh K, Khan SA. Crystallization kinetics and phase transformation studies on glassy Se85In15−xSbx system. Mater Chem Phys. 2018;211:97–106.

    Article  CAS  Google Scholar 

  67. Mott NF, Davis EA. Electronic processes in non-crystalline materials. Oxford: Clarendon; 1979. p. 428.

    Google Scholar 

  68. Theye ML. In: Proceedings of the Vth international conference on amorphous and liquid semiconductors, vol 1. 1973. p. 479.

  69. Nang TT, Okuda M, Matsushita T, Yokota S, Suzuki A. Photovoltaic effect of GexSe1−x thin film Schottky diode. Jpn J Appl Phys. 1976;14:849.

    Article  Google Scholar 

  70. Abdel-latif AY, Kotb HM, Hafiz MM, Dabban MA. Influence of heat treatment on the structural, optical and electrical properties of Cd20Sn10Se70 thin films. Mater Sci Semicond Process. 2015;30:502–12.

    Article  CAS  Google Scholar 

  71. Nguyen SH, Koffyberg FP. Optical band gap and electron affinity of semiconducting CdGa2O4. Solids State Commun. 1990;76:1243.

    Article  Google Scholar 

  72. Koffyberg FP. Optical band gaps and electron affinities of semiconducting Rh2O3(I) and Rh2O3(III). J Phys Chem Solids. 1992;53:1285–8.

    Article  CAS  Google Scholar 

  73. Mulliken RS. A new electroaffinity scale; Together with data on valence states and on valence ionization potentials and electron affinities. J Chem Phys. 1984;2:782.

    Article  Google Scholar 

  74. Husain M, Batra A, Srivastava KS. Electronegativity scale from X-ray photoelectron spectroscopic data. Polyhedron. 1989;8:1233–7.

    Article  CAS  Google Scholar 

  75. Sanderson RT. Inorganic chemistry. New Delhi: Affiliated East-West Press PUT; 1971.

    Google Scholar 

  76. Shchennikov VV, Ovsyannikov SV. Thermoelectric power, magnetoresistance of lead chalcogenides in the region of phase transitions under pressure. Solids State Commun. 2003;126:373–8.

    Article  CAS  Google Scholar 

  77. Khan SA, Khan ZH, El-Sebaii AA, Al-Marzouki FM, Al-Ghamdi AA. Structural, optical and electrical properties of cadmium-doped lead chalcogenide (pbSe) thin films. Physica B. 2010;405:3384–90.

    Article  CAS  Google Scholar 

  78. Adam N, Bahishti A, Zulfequar M. The study of Optical parameters and dc- conductivity of Se100-xHgx thin films. Physica B. 2012;407:3868–71.

    Article  CAS  Google Scholar 

  79. Khan MAM, Khan MW, Husain M, Zulfequar M. Electrical transport and optical properties of Zn doped Bi–Se chalcogenide glasses. J Alloys Compd. 2009;486:876–80.

    Article  CAS  Google Scholar 

  80. Dahshan A, Sharma P, Aly KA. Semiconducting quaternary chalcogenide glasses as new potential thermoelectric materials: an As–Ge–Se–Sb case. Dalton Trans. 2015;44:14799–804.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to UGC, New Delhi, for providing financial assistance under the project Grant No. (UGC Proj. 42-780/2013 SR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi P. Tripathi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, R.P., Alvi, M.A. & Khan, S.A. Investigations of thermal, optical and electrical properties of Se85In15−xBix glasses and thin films. J Therm Anal Calorim 146, 2261–2272 (2021). https://doi.org/10.1007/s10973-020-10332-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10332-7

Keywords

Navigation