Skip to main content
Log in

Optical characterization of nanostructured Ge1 − xSnxSe2.5 (x = 0, 0.3, 0.5) films

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The paper reports the optical properties of thin films of nanostructured Ge1 − xSnxSe2.5 (x = 0, 0.3, 0.5) glassy alloys. The glassy alloys of Ge1 − xSnxSe2.5 (x = 0, 0.3, 0.5) were prepared using melt quenching method. Thin films of nanostructured Ge1 − xSnxSe2.5 (x = 0, 0.3, 0.5) glassy alloys were prepared using physical vapor deposition method. The films were characterized using XRD, EDX and TEM, which confirmed the amorphous nature, composition and formation of nanorods in the samples. Absorption and transmission spectra of thin films were recorded in the spectral range 400–2500 nm to obtain energy band gap, refractive index, extinction coefficient, dielectric constant etc. Results show that refractive index increases while band gap decreases on increase of Sn content in the Ge–Se system. This is due to the increase in density of defect states within band gap. The values of Urbach energy support the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Boolchand, P., Grothaus, J., Bresser, W.J., Suranyi, P.: Structural origin of broken chemical order in a GeSe2 glass. Phys. Rev. B 25(4), 2975–2978 (1982)

    Article  ADS  Google Scholar 

  • Chand, S., Thakur, N., Katyal, S.C., Barman, P.B., Sharma, V., Sharma, P.: Recent developments on the synthesis, structural and optical properties of chalcogenide quantum dots. Sol. Energy Mater. Sol. Cells 168, 183–200 (2017)

    Article  Google Scholar 

  • Dahshan, A., Hegazy, H.H., Aly, K.A.: Pankaj Sharma, Semiconducting Ge–Se–Sb–Ag chalcogenides as prospective materials for thermoelectric applications. Phys. B 526, 117–121 (2017)

    Article  ADS  Google Scholar 

  • Darwish, A.A.A., Rashad, M., Bekheet, A.E., El-Nahass, M.M.: Linear and nonlinear optical properties of GeSe2 − xSnx (0 ≤ x ≤ 0.8) thin films for optoelectronic applications. J. Alloys Compd. 709, 640–645 (2017)

    Article  Google Scholar 

  • Deepika, Saxena, N.S.: Thermodynamics of glass/crystal transformation in Se58Ge42 − xPbx (9 ≤ x ≤ 20) glasses. J. Phys. Chem. B 114, 28–35 (2010)

    Article  Google Scholar 

  • Deepika, Singh, H.: Structural and optical study of nanostructured Se80 − xTe20Sbx(0 ≤ x ≤ 12) thin films. Nano-struct. Nano-objects 10, 192–197 (2017a)

    Article  Google Scholar 

  • Deepika, Singh, H.: Optical investigation of vacuum evaporated Se80 − xTe20Sbx(x = 0, 6, 12) amorphous thin films. Infrared Phys. Technol. 85, 39–43 (2017b)

    Article  ADS  Google Scholar 

  • Deepika, Singh, H.: Study of size distribution in Se58Ge39Pb3 glass using various characterization methods. MAPAN-J. Metrol. Soc. India 33, 165–168 (2018)

    Google Scholar 

  • Deepika, Jain, P.K., Rathore, K.S., Saxena, N.S.: Determination of glass forming ability of Ge1 − xSnxSe2.5 (0 ≤ x ≤ 0.5) system using differential scanning calorimetry. Philos. Mag. Lett. 89(3), 194–200 (2009a)

    Article  ADS  Google Scholar 

  • Deepika, Rathore, K.S., Saxena, N.S.: A kinetic analysis on non-isothermal glass-crystal transformation in Ge1 − xSnxSe2.5 (0 ≤ x ≤ 0.5) glasses. J. Phys.: Condens. Matter 21, 335102 (2009b)

  • Deepika, Singh, H., Saxena, N.S.: Electrical properties of Ge1Se2.5 and Ge0.6Se2.5Sn0.4 glasses. Mater. Res. Express 4, 035203 (2017)

  • Gleiter, H.: Nanoglasses: a new kind of noncrystalline materials. J. Nanotechnol. 4, 517–533 (2013)

    Google Scholar 

  • Haynes, W.M.: CRC Handbook of Chemistry and Physics, 95th edn. Taylor and Francis, New York (2014–2015)

  • Jemali, N.A., Kassim, H.A., Devi, V.R., Shrivastava, K.N.: Ab initio calculation of vibrational frequencies of GexSe1 − x glass. J. Non-Cryst. Solids 354, 1744–1750 (2008)

    Article  ADS  Google Scholar 

  • Jing, J., Kramer, A., Birringer, R., Gleiter, H., Gonser, U.: Modified atomic structure in a Pd–Fe–Si nanoglass: a Mössbauer study. J. Non-Cryst. Solids 113, 167–170 (1989)

    Article  ADS  Google Scholar 

  • Khan, Z.H., Husain, M.: Electrical and optical properties of thin film of a-Se70Te30 nanorods. J. Alloys Compd. 486, 774–779 (2009)

    Article  Google Scholar 

  • Khan, Z.H., Khan, S.A., Salah, N., Habib, S., El Hamidy, S.M.A., Al-Ghamdi, A.A.: Effect of composition on electrical and optical properties of thin films of amorphous GaxSe100 − x nanorods. Nanoscale Res. Lett. 5, 1512–1517 (2010a)

    Article  ADS  Google Scholar 

  • Khan, S.A., Khan, Z.H., Sibaee, A., Al-Ghamdi, A.A.: Structural, optical and electrical properties of cadmium doped lead chalcogenide (PbSe) thin films. Phys. B 405, 3384–3390 (2010b)

    Article  ADS  Google Scholar 

  • Khan, Z.H., Khan, S.A., Salah, N., Al-Ghamdi, A.A., Habib, S.: Electrical properties of thin films of a-GaxTe100 − x composed of nanoparticles. Philos. Mag. Lett. 9, 207–213 (2011a)

    Article  ADS  Google Scholar 

  • Khan, Z.H., Khan, S.A., Habib, S., Al-Ghamdi, A.A., Salah, N.: Morphology and optical properties of thin films of GaxSe100 − x nanoparticles. Nanosci. Nanotechnol. Lett. 3, 319–323 (2011b)

    Article  Google Scholar 

  • Kumar, S., Sharma, P., Sharma, V.: Redshift in Absorption Edge of Cd1 −TxCoxS Nanofilms. IEEE Trans. Nanotechnol. 13, 343–348 (2014)

    Article  ADS  Google Scholar 

  • Mott, N.F., Davis, E.A.: Electronic Processes in Non-crystalline Materials. Clarendon Press, Oxford (1979)

    Google Scholar 

  • Murakami, Y., Usuki, T., Sakurai, M., Kohara, S.: Intermediate-range structure of amorphous GeSe2 alloy. Mater. Sci. Eng., A 449–451, 544–547 (2007)

    Article  Google Scholar 

  • Nasir, M., Zulfequar, M.: Effect of sulfur additive on density of localized states in nanostructures chalcogenide Se95 − xSxZn5 thin films. J. Phys. Chem. Solids 74, 1527–1532 (2013)

    Article  ADS  Google Scholar 

  • Rashad, M., Amin, R., Hafiz, M.M.: Blue shift in the optical band gap of amorphous nanostructure Se80Te20 − xSnx. Chalcogenide Lett. 12, 441–451 (2015)

    Google Scholar 

  • Rashad, M., Darwish, A.A.A., Attia, A.A.: Impact of film thickness on optical and electrical transport properties of noncrystalline GeSe1.4Sn0.6 films. J. Non-Cryst. Solids 470, 1–7 (2017)

    Article  ADS  Google Scholar 

  • Rashad, M., Darwish, A.A.A., Al Said, S.A.F., Hendi, A.A., Hafiz, M.M.: Formation of Ge35In8S57 amorphous films for optical applications. Chin. J. Phys. 56, 212–220 (2018)

    Article  Google Scholar 

  • Salah, N., Habib, S.S., Khan, Z.H.: Direct bandgap materials based on the thin films of SexTe100 − x nanoparticles. Nanoscale Res. Lett. 7, 509–516 (2012a)

    Article  ADS  Google Scholar 

  • Salah, N., Sami, H., Khan, Z.H., Khan, S.A.: Synthesis and characterization of Se35Te65 − xGex nanoparticle films and their optical properties. J. Nanomater. 201, 393084 (2012b)

  • Sarrach, D.J., de Neufiville, J.P., Hawoth, W.L.: Studies of amorphous Ge–Se–Te alloys (I): preparation and calorimetric observations. J. Non-Cryst. Solids 22, 245–267 (1976)

    Article  ADS  Google Scholar 

  • Schardt, C.R., Simmons, J.H., Lucas, P., Le Neindre, L., Lucas, J.: Photodarkening in Ge3Se17 glass. J. Non-Cryst. Solids 274, 23–29 (2000)

    Article  ADS  Google Scholar 

  • Sedeek, K., Adam, A., Balboul, M.R., Wahab, L.A., Makram, N.: Structural correlations in light irradiated Ge36Se64 amorphous films: radial distribution function study. Mater. Res. Bull. 43, 1355–1362 (2008)

    Article  Google Scholar 

  • Sharma, P., Dahshan, A., Aly, K.A.: New quaternary Ge–Se–Sb–Ag optical materials: Blue shift in absorption edge and evaluation of optical parameters. J. Alloys Compd. 616, 323–327 (2014)

    Article  Google Scholar 

  • Sharma, P., El-Bana, M.S., Fouad, S.S., Sharma, V.: Effect of compositional dependence on physical and optical parameters of Te17Se83 − xBix glassy system. J. Alloys Compd. 667, 204–210 (2016a)

    Article  Google Scholar 

  • Sharma, P., Sharma, N., Sharda, S., Katyal, S.C., Sharma, V.: Recent developments on the optical properties of thin films of chalcogenide glasses. Progress Solid State Chem. 44, 131–141 (2016b)

    Article  Google Scholar 

  • Sharma, P., Dahshan, A., Sehgal, V.K., Abdel-Nabi Aly, K.: High thermoelectric action in vacuum deposited indium alloyed chalcogenide thin films: InxSe100 − x. IEEE Trans. Electron Devices 65, 3408–3413 (2018)

    Article  ADS  Google Scholar 

  • Swanepoel, R.: Determination of the thickness and optical constants of amorphous silicon. J. Phys. E: Sci. Instrum. 16, 1214–1222 (1983)

    Article  ADS  Google Scholar 

  • Tauc, J.: The Optical Properties of Solids. North-Holland, Amsterdam (1970)

    Google Scholar 

  • Tripathi, K., Bahishti, A.A., Khan, M.A.M., Husain, M., Zulfequar, M.: Optical properties of selenium–tellurium nanostructured thin film grown by thermal evaporation. Phys. B 404, 2134–2137 (2009)

    Article  ADS  Google Scholar 

  • Urbach, F.: The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

First author Deepika is highly thankful to the Department of Science and Technology, Government of India for financial support vide Reference No. SR/WOS-A/PM-1017/2014 under Women Scientist Scheme to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepika.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepika, Singh, H. & Saxena, N.S. Optical characterization of nanostructured Ge1 − xSnxSe2.5 (x = 0, 0.3, 0.5) films. Opt Quant Electron 51, 11 (2019). https://doi.org/10.1007/s11082-018-1717-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1717-4

Keywords

Navigation