Skip to main content
Log in

Degradation kinetics and lifetime prediction for polystyrene/nanocellulose nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Cellulose nanofibers (CNFs) and cellulose nanocrystals (CNCs) were incorporated into polystyrene (PS), and thermal stability and lifetime prediction of the nanocomposites were investigated for variable filler content (0.25, 0.50 and 1% w/w). Thermogravimetric analysis (TG) was carried out at four different heating rates (5, 10, 20 and 40 °C min−1) in a non-isothermal condition, and the degradation kinetics was studied based on Friedman and Flynn–Wall–Ozawa (FWO) methods. The same thermal degradation behavior was observed for all samples in the studied range of reinforcement content. For both reinforcements (CNFs and CNCs), Friedman and FWO results showed no dependence of the activation energy on conversion degree. A single-step degradation mechanism was observed for all samples (A → B degradation model), and the kinetic studies indicated an autocatalytic reaction model with a good fitting of the curves. Lifetime prediction based on kinetic analysis was successfully applied. Lastly, nanocellulose morphology influenced nanocomposite lifetime prediction, which became more stable over time, maintaining almost 100% of the mass for 10 years exposed at 30–120 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lazzari LK Jr, Zampieri VB, Neves RM, Zanini M, Zattera AJ, Baldasso C. A study on adsorption isotherm and kinetics of petroleum by cellulose cryogels. Cellulose. 2019; 26:1231–46.

    Article  Google Scholar 

  2. Lavoratti A, Scienza LC, Zattera AJ. Dynamic-mechanical and thermomechanical properties of cellulose nanofiber/polyester resin composites. Carbohydr Polym. 2016;136:955–63.

    CAS  PubMed  Google Scholar 

  3. Neves RM, Lopes KS, Zimmermann MG V, Poletto M, Zattera AJ. Cellulose Nanowhiskers Extracted from Tempo- Oxidized Curaua Fibers. J Nat Fibers 2019;0:1–11.

  4. Fernandes SCM, Sadocco P, Alonso-Varona A, Palomares T, Eceiza A, Silvestre JD, et al. Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Appl Mater Interfaces Bioinspired. 2013;5:3290–7.

    CAS  Google Scholar 

  5. Chalco-Sandoval W, Fabra MJ, López-Rubio A, Lagaron JM. Development of polystyrene-based films with temperature buffering capacity for smart food packaging. J Food Eng. 2015;164:55–62.

    CAS  Google Scholar 

  6. Hannon JC, Kerry JP, Cruz-Romero M, Azlin-Hasim S, Morris M, Cummins E. Kinetic desorption models for the release of nanosilver from an experimental nanosilver coating on polystyrene food packaging. Innov Food Sci Emerg Technol. 2017;44:149–58.

    CAS  Google Scholar 

  7. Lerman MJ, Lembong J, Muramoto S, Gillen G, Fisher JP. The evolution of polystyrene as a cell culture material. Tissue Eng—Part B. 2018;24:359–72.

    CAS  Google Scholar 

  8. Neves RM, Lopes KS, Zimmermann MVG, Poletto M, Zattera AJ. Characterization of polystyrene nanocomposites and expanded nanocomposites reinforced with cellulose nanofibers and nanocrystals. Cellulose. 2019;26:4417–4429.

    Google Scholar 

  9. Ballner D, Herzele S, Keckes J, Edler M, Griesser T, Liebner F, et al. Lignocellulose nanofiber-reinforced polystyrene produced from composite microspheres obtained in suspension polymerization shows superior mechanical performance. Appl Mater Interfaces. 2016;21:3520–13525

    Google Scholar 

  10. Li K, Huang J, Xu D, Zhong Y, Zhang L, Cai J. Mechanically strong polystyrene nanocomposites by peroxide-induced grafting of styrene monomers within nanoporous cellulose gels. Carbohydr Polym. 2018;199:473–81.

    CAS  PubMed  Google Scholar 

  11. Erceg M, Kres I. Different approaches to the kinetic analysis of thermal degradation of poly (ethylene oxide). Therm Anal Calorim. 2018; 131:325–334.

    Google Scholar 

  12. Ourique PA, Ornaghi FG, Ornaghi HL Jr, Wanke CH, Bianchi O. Thermo-oxidative degradation kinetics of renewable hybrid polyurethane-urea obtained from air-oxidized soybean oil. J Therm Anal Calorim. 2019;137:1–11.

    Google Scholar 

  13. Vyazovkin S, Burnhamb AK, Criadoc JM, Pérez-Maquedac LA, Popescud C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2011;590:1–23.

    Google Scholar 

  14. Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol. Rapid Commun. 2006;27:1515–32.

    Article  Google Scholar 

  15. Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM. Generalized master plots as a straightforward approach for determining the kinetic model: the case of cellulose pyrolysis. Thermochim Acta. 2013;20:54-59.

    Google Scholar 

  16. Zanchet A, Demori R, de Sousa FDB, Ornaghi HL, Schiavo LSA, Scuracchio CH. Sugar cane as an alternative green activator to conventional vulcanization additives in natural rubber compounds: thermal degradation study. J Clean Prod. 2019;207:248–60.

    CAS  Google Scholar 

  17. Camino G, Lomakin SM, Lazzari M. Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects. Polymer (Guildf). 2001;42:2395–402.

    CAS  Google Scholar 

  18. Pistor V, Fiorio R, Ornaghi FG, Ornaghi HL, Zattera AJ. Degradation kinetics of vulcanized ethylene–propylene–diene terpolymer residues. J Appl Polym Sci. 2011;122:1053–1057.

    CAS  Google Scholar 

  19. Criado JM, Málek J, Ortega A. Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochim Acta. 1989;147:377–85.

    CAS  Google Scholar 

  20. Ornaghi HL, Ornaghi FG, Benini KCCC, Bianchi O. A comprehensive kinetic simulation of different types of plant fibers: autocatalytic degradation mechanism. Cellulose. 2019;26:7145–57.

    CAS  Google Scholar 

  21. Moukhina E. Determination of kinetic mechanisms for reactions measured with thermoanalytical instruments. J Therm Anal Calorim. 2012;109:1203–14.

    CAS  Google Scholar 

  22. Ornaghi FG, Bianchi O, Ornaghi HLJ, Jacobi MAM. Fluoroelastomers reinforced with carbon nano fibers: a survey on rheological, swelling, mechanical, morphological, and prediction of the thermal degradation kinetic behavior. Polym Eng Sci. 2019;59:1223–32.

    CAS  Google Scholar 

  23. Neves RM, Ornaghi HL, Zattera AJ, Amico SC. The influence of silane surface modification on microcrystalline cellulose characteristics. Carbohydr Polym. 2020;230:115595–605.

    Google Scholar 

  24. Bourbigot S, Gilman JW, Wilkie CA. Kinetic analysis of the thermal degradation of polystyrene e montmorillonite nanocomposite. Polym Degrad Stab. 2004;84:483–92.

    CAS  Google Scholar 

  25. Krishna SV, Pugazhenthi G. Properties and thermal degradation kinetics of polystyrene/organoclay nanocomposites synthesized by solvent blending method: effect of processing conditions and organoclay loading. J Appl Polym Sci. 2011;120:1322–36.

    CAS  Google Scholar 

  26. Vyazovkin S, Dranca I, Fan X, Advincula R. Degradation and relaxation kinetics of polystyrene-clay nanocomposite prepared by surface initiated polymerization. J Phys Chem B. 2004;108:11672–9.

    CAS  Google Scholar 

  27. Abate L, Blanco I, Bottino FA, Di Pasquale G, Fabbri E, Orestano A. Kinetic study of the thermal degradation of ps/mmt nanocomposites prepared with imidazolium surfactants. J Therm Anal Calorim. 2008;91:681–6.

    CAS  Google Scholar 

  28. Bianchi O, Repenning GB, Canto LB, Mauler RS, Oliveira RVB. Kinetics of thermo-oxidative degradation of PS-POSS hybrid nanocomposite. Polym Test. 2013;32:794–801.

    CAS  Google Scholar 

  29. Blanco I, Bottino FA, Cicala G, Latteri A, Recca A. A kinetic study of the thermal and thermal oxidative degradations of new bridged POSS/PS nanocomposites. Polym Degrad Stab. 2013;98:2564–70.

    CAS  Google Scholar 

  30. Marinovic M, Stojanovic Z, Krkljes A, Comor MI. Thermal degradation kinetics of polystyrene/cadmium sulfide composites. Polym Degrad Stab. 2009;94:891–7.

    Google Scholar 

  31. Borsoi C, Zimmernnam MVG, Zattera AJ, Santana RMC, Ferreira CA. Thermal degradation behavior of cellulose nanofibers and nanowhiskers. J Therm Anal Calorim. 2016;126:1867–78.

    CAS  Google Scholar 

  32. Sánchez-jiménez PE, Pérez-maqueda LA, Perejón A, Criado JM. A new model for the kinetic analysis of thermal degradation of polymers driven by random scission. 2010;95:733–9.

    Google Scholar 

  33. Vrandecic NS, Erceg M, Klaric I, Jakíc M. Kinetic analysis of thermal degradation of poly (ethylene glycol) and poly (ethylene oxide) s of different molecular weight. Thermochim. Acta. 2010;498:71–80.

    CAS  Google Scholar 

  34. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A. Computational aspects of kinetic analysis Part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.

    CAS  Google Scholar 

  35. Blanco I. Lifetime prediction of polymers: to bet, or not to bet—is this the question? Materials. 2018;11:1383–95.

    Google Scholar 

  36. Poletto M, Ornaghi HL Jr, Zattera AJ. Thermal decomposition of natural fibers: kinetics and degradation mechanisms. New York: Wiley; 2015. p. 515–45.

    Google Scholar 

  37. Ornaghi HL, Poletto M, Zattera AJ, Amico SC. Correlation of the thermal stability and the decomposition kinetics of six different vegetal fibers. Cellulose. 2014;21:177–88.

    CAS  Google Scholar 

  38. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    CAS  Google Scholar 

  39. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C Polym Symp. 1964;6:183–95.

    Google Scholar 

  40. Cabeza A, Sobrón F, Yedro FM, García-Serna J. Autocatalytic kinetic model for thermogravimetric analysis and composition estimation of biomass and polymeric fractions. Fuel. 2015;148:212–25.

    CAS  Google Scholar 

  41. Ali I, Bahaitham H, Naebulharam R. A comprehensive kinetics study of coconut shell waste pyrolysis Bioresource Technology A comprehensive kinetics study of coconut shell waste pyrolysis. Bioresour Technol. 2017;235:1–11.

    CAS  PubMed  Google Scholar 

  42. Khawam A, Flanagan DR. Solid-state kinetic models: basics and mathematical fundamentals. J. Phys. Chem. B. 2006;35:17315–17328.

    CAS  PubMed  Google Scholar 

  43. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    CAS  Google Scholar 

  44. Yao F, Wu Q, Lei Y, Guo W, Xu Y. Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab. 2008;93:90–8.

    CAS  Google Scholar 

  45. Siqueira G, Bras J, Dufresne A. Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules. 2009;2:425–32.

    CAS  Google Scholar 

  46. Lee K, Aitomäki Y, Berglund LA, Oksman K, Bismarck A. On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol. 2014;105:15–27.

    Google Scholar 

  47. Peterson JD, Vyazovkin S, Wight CA. Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly (propylene). Macromol. Chem. Phys. 2001;202:775–84.

    CAS  Google Scholar 

  48. Miranda MIG, Bica CID, Nachtigall SMB, Rehman N, Rosa SML. Thermochimica acta kinetical thermal degradation study of maize straw and soybean hull celluloses by simultaneous DSC–TGA and MDSC techniques. Thermochim Acta. 2013;565:65–71.

    CAS  Google Scholar 

  49. Drozin D, Sozykin S, Ivanova N, Olenchikova T, Krupnova T, Krupina N, et al. Kinetic calculation: software tool for determining the kinetic parameters of the thermal decomposition process using the Vyazovkin Method. SoftwareX. 2020;11:100359.

    Google Scholar 

  50. Faravelli T, Pinciroli M, Pisano F, Bozzano G, Dente M, Ranzi E. Thermal degradation of polystyrene. J Anal Appl Pyrolysi. 2001;60:103–21.

    CAS  Google Scholar 

  51. Sousa FDB, Zanchet A, Ornaghi Júnior HL, Ornaghi FG. Revulcanization kinetics of waste tire rubber devulcanized by microwaves: challenges in getting recycled tire rubber for technical application. ACS Sustain Chem Eng. 2019;7:15413–26. 

    Article  CAS  Google Scholar 

  52. Staudinger H, Steinhofer A. Über hochpolymere Verbindungen. 109. Mitteilung. Viskosität Untersuchungen an Polyphenylether. Ann Chem. 1995;517:35.

    Google Scholar 

  53. Grassie N, Scott G. Polymer degradation and stabilisation. Cambridge: Cambridge University Press; 1985.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Brazilian Ministry of Labor (MTE), University of Caxias do Sul (UCS) and CNPq (Process Number: 153335/2018-1) for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. RMN, HLO and FGO conceived the study; RMN and HLO contributed to methodology; RMN and HLO contributed to formal analysis and investigation; RMN contributed to writing—original draft preparation and editing; HLO, FGO, SCA and AJZ revised the manuscript; AJZ supervised the study.

Corresponding author

Correspondence to Roberta Motta Neves.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neves, R.M., Ornaghi, H.L., Ornaghi, F.G. et al. Degradation kinetics and lifetime prediction for polystyrene/nanocellulose nanocomposites. J Therm Anal Calorim 147, 879–890 (2022). https://doi.org/10.1007/s10973-020-10316-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10316-7

Keywords

Navigation