Skip to main content
Log in

Preparation and characterization of PLA composites with modified magnesium hydroxide obtained from seawater

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Modification of poly(lactic acid) (PLA) was performed with the surface modified magnesium hydroxide (mMH) obtained from seawater. Surface modification of MH with different amount of stearic acid (SA) results in chemically bonded SA, stearate as confirmed by Fourier transform infrared spectroscopy (FT-IR). Based on FT-IR and X-ray diffraction (XRD) analysis modified filler with a higher amount of SA was used for the composite preparation. PLA/m10MH composites were prepared using laboratory mixing extruder. Differential scanning calorimetry (DSC) was applied to study thermal properties and crystallinity of PLA/mMH composites, while the thermal stability was performed by thermogravimetric analysis (TG). According to DSC analysis, PLA crystallization is primary influenced by the filler. PLA/m10MH composites degrade in four degradation stages. With an increase of m10MH content in the composites, their thermal degradation becomes more complex and their thermal stability is getting worse. XRD and X-ray microcomputed tomography (XμCT), used to obtain structural and microstructural information about PLA/m10MH composites, revealed that addition of m10MH decreases the crystallinity of PLA, increases the porosity of the composite and produces agglomeration of mMH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Auras R, Lim L-T, Selke SEM, Tsuji H, editors. Poly(lactic acid): synthesis, structures, properties, processing, and applications. Hoboken: Wiley; 2010.

    Google Scholar 

  2. Van den Oever M, Molenveld K, Van der Zee M, Bos H. Bio-based and biodegradable plastics: facts and figures: focus on food packaging in the Netherlands. Wageningen Food & Biobased Research number; 2017.

  3. Vink ETH, Rábago KR, Glassner DA, Gruber PR. Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polym Degrad Stabil. 2003;80:403–19.

    Article  CAS  Google Scholar 

  4. Běhálek L, et al. Thermal properties and non-isothermal crystallization kinetics of biocomposites based on poly(lactic acid), rice husks and cellulose fibres. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09894-3.

    Article  Google Scholar 

  5. Bubeck RA, Merrington A, Dumitrascu A, Smith PB. Thermal analyses of poly(lactic acid) PLA and micro-ground paper blends. J Therm Anal Calorim. 2018;131:309–16.

    Article  CAS  Google Scholar 

  6. Li Y, Han C, Yu Y, Xiao L, Shao Y. Isothermal and non-isothermal cold crystallization kinetics of poly(L-lactide)/functionalized eggshell powder composites. J Therm Anal Calorim. 2018;131:2213–23.

    Article  CAS  Google Scholar 

  7. Kosowska K, Szatkowski P. Influence of ZnO, SiO2 and TiO2 on the aging process of PLA fibers produced by electrospinning method. J Therm Anal Calorim. 2020;140:1769–78.

    Article  CAS  Google Scholar 

  8. Xin S, et al. Confinement crystallization of poly(L-lactide) induced by multiwalled carbon nanotubes and graphene nanosheets. J Therm Anal Calorim. 2015;122:379–91.

    Article  CAS  Google Scholar 

  9. Pilarska AA, Klapiszewski Ł, Jesionowski T. Recent developments in the synthesis, modification and application of Mg(OH)2 and MgO: a review. Powder Technol. 2017;319:373–407.

    Article  CAS  Google Scholar 

  10. Kong Q, Qian H. Low-temperature synthesis of Mg(OH)2 nanoparticles from MgO as halogen-free flame retardant for polypropylene. Fire Mater. 2014;38:145–54.

    Article  CAS  Google Scholar 

  11. Wang W, Xueliang X, Chen J. The role of acetic acid in magnesium oxide preparation via chemical precipitation. J Am Ceram Soc. 2008;91:1697–9.

    Article  CAS  Google Scholar 

  12. Wahab R, Ansari SG, Dar MA, Kim YS, Shin HS. Synthesis of magnesium oxide nanoparticles by sol-gel process. Mater Sci Forum. 2007;558–559:983–6.

    Article  Google Scholar 

  13. Hai-Yan Q, Min D, Shao-ming Z, Ling-Ling X. Synthesis of superfine Mg(OH)2 particles by magnesite. Mater Sci Eng A-Struct. 2007;445–446:600–3.

    Google Scholar 

  14. Sirota V, et al. Preparation of crystalline Mg(OH)2 nanopowder from serpentinite mineral. Int J Min Sci Technol. 2018;28:499–503.

    Article  CAS  Google Scholar 

  15. Shand MA. The chemistry and technology of magnesia. Hoboken: Wiley; 2006.

    Book  Google Scholar 

  16. Song X, Tong K, Sun S, Sun Z, Yu J. Preparation and crystallization kinetics of micron-sized Mg(OH)2 in a mixed suspension mixed product removal crystallizer. Front Chem Sci Eng. 2013;7:130–8.

    Article  Google Scholar 

  17. Cabrera-Álvarez EN, et al. Study of the silane modification of magnesium hydroxide and their effects on the flame retardant and tensile properties of high density polyethylene nanocomposites. Polym Compos. 2014;35:1060–9.

    Google Scholar 

  18. Lih E, et al. Modified magnesium hydroxide nanoparticles inhibit the inflammatory response to biodegradable poly(lactide-co-glycolide) implants. ACS Nano. 2018;12:6917–25.

    Article  CAS  Google Scholar 

  19. Liu L, et al. Surface modification of magnesium hydroxide and its application in flame-retardant oil-extended styrene–ethylene–butadiene–styrene/polypropylene composites. J App Polym Sci. 2019;136(47129):1–11.

    Google Scholar 

  20. Zhao P, Liu Z, Gehde M, Kuehnert I, Leuteritz A. Effect of phosphorus-containing modified magnesium hydroxide on the mechanical properties and flammability of PLA/MH composites. AIP Conf Proc. 2019;2055(050004):1–4.

    Google Scholar 

  21. Quispe-Dominguez R, Naseem S, Leuteritz A, Kuehnert I. Synthesis and characterization of MgAl-DBS LDH/PLA composite by sonication-assisted masterbatch (SAM) melt mixing method. RSC Adv. 2019;9:658–67.

    Article  CAS  Google Scholar 

  22. Kang EY, Lih E, Kim IH, Joung YK, Han DK. Effects of poly(L-lactide-ε-caprolactone) and magnesium hydroxide additives on physico-mechanical properties and degradation of poly(L-lactic acid). Biomater Res. 2016;20(7):1–9.

    Google Scholar 

  23. Mobedi H, Nekoomanesh M, Orafaei H, Mivehchi H. Studying the degradation of poly(L-lactide) in presence of magnesium hydroxide. Iran Polym J. 2006;15:31–9.

    CAS  Google Scholar 

  24. Kum, et al. Effect of magnesium hydroxide nanoparticles with rod and plate shape on mechanical and biological properties of Poly(L-lactide) composites. Macromol Res. 2014;22:1032–41.

    Article  CAS  Google Scholar 

  25. Kum CH, et al. Biodegradable poly(L-lactide) composites by oligolactide-grafted magnesium hydroxide for mechanical reinforcement and reduced inflammation. J Mater Chem B. 2013;1:2764–72.

    Article  CAS  Google Scholar 

  26. Jakić J, Štefanić G, Labor M, Martinac V. Microstructural characteristics of low-temperature (1400 °C) Sintered MgO obtained from seawater. Sci Sinter. 2017;49:61–71.

    Article  Google Scholar 

  27. Ke T, Sun X. Effects of moisture content and heat treatment on the physical properties of starch and poly(lactic acid) blends. J Appl Polym Sci. 2001;81:3069–82.

    Article  CAS  Google Scholar 

  28. Aguirre JM, Gutiérrez A, Giraldo O. Simple route for the synthesis of copper hydroxy salts. J Braz Chem Soc. 2011;22:546–51.

    Article  CAS  Google Scholar 

  29. Huang H, et al. Stearic acid surface modifying Mg(OH)2: mechanism and its effect on properties of ethylene vinyl acetate/Mg(OH)2 composites. J Appl Polym Sci. 2008;107:3325–31.

    Article  CAS  Google Scholar 

  30. Focke WW, Molefe D, Labuschagne FJ, Ramjee S. The influence of stearic acid coating on the properties of magnesium hydroxide, hydromagnesite, and hydrotalcite powders. J. Mater. Sci. 2009;44:6100–9.

    Article  CAS  Google Scholar 

  31. Gilbert M, Sutherland I, Guest A. Characterization of coated particulate fillers. J Mater Sci. 2000;35:391–7.

    Article  CAS  Google Scholar 

  32. Liauw CM, Rothon RN, Lees GC, Iqbal Z. Flow micro-calorimetry and FTIR studies on the adsorption of saturated and unsaturated carboxylic acids onto metal hydroxide flame-retardant fillers. J Adhes Sci Technol. 2001;15:889–912.

    Article  CAS  Google Scholar 

  33. Zhang F, Zhang H, Su Z. Surface treatment of magnesium hydroxide to improve its dispersion in organic phase by the ultrasonic technique. Appl Surf Sci. 2007;253:7393–7.

    Article  CAS  Google Scholar 

  34. Bracconi P, Andrès C, N’diaye A, Pourcelot Y. Thermal analyses of commercial magnesium stearate pseudopolymorphs. Thermochim Acta. 2005;429:43–51.

    Article  CAS  Google Scholar 

  35. Wesolowski M, Rojek B. Thermogravimetric detection of incompatibilities between atenolol and excipients using multivariate techniques. J Therm Anal Calorim. 2013;113:169–77.

    Article  CAS  Google Scholar 

  36. Perinović Jozić S, Stoilova A, Jakić J, Andričić B. Preparation and thermal analysis of polylactic acid/magnesium hydroxide composites. In: 20th international conference on materials MATRIB 2019. 2019; p. 175–90.

  37. Aoyagi Y, Yamashita K, Doi Y. Thermal degradation of poly[(R)-3-hydroxybutyrate], poly[ε-caprolactone], and poly[(S)-lactide]. Polym Degrad Stabil. 2002;76:53–9.

    Article  CAS  Google Scholar 

  38. McNeill IC, Leiper HA. Degradation studies of some polyesters and polycarbonates—1. Polylactide: General features of the degradation under programmed heating conditions. Polym Degrad Stabil. 1985;11:267–85.

    Article  CAS  Google Scholar 

  39. Pielichowski K, Njuguna J. Thermal degradation of polymeric materials. Shawbury: Rapra Technology; 2005.

    Google Scholar 

  40. Zhang D, Liu Z, Li L, Zhu L. Surface modification of magnesium hydroxide with stearic acid. Adv Mater Res. 2013;602–604:1693–9.

    Article  Google Scholar 

  41. Lerdkanchanaporn S, Dollimore D, Alexander KS. A simultaneous TG-DTA study of the degradation in nitrogen of cellulose to carbon, alone and in the presence of other pharmaceutical excipients. Thermochim Acta. 1998;324:25–32.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanja Perinović Jozić.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perinović Jozić, S., Jozić, D., Jakić, J. et al. Preparation and characterization of PLA composites with modified magnesium hydroxide obtained from seawater. J Therm Anal Calorim 142, 1877–1889 (2020). https://doi.org/10.1007/s10973-020-10255-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10255-3

Keywords

Navigation