Skip to main content
Log in

Numerical investigation of flow boiling characteristics of water in a rectangular microchannel

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the case of flow boiling, the prediction of vapour fraction in the horizontal microchannel is a severe issue using the numerical technique. Two-dimensional numerical simulation was carried out for the flow boiling in microchannels with different boiling models (VOF, MM and EM). This study is one of the first studies that report a numerical assessment of these three models. Numerical simulations have done with water as a working fluid. The different mass flow rates (1.586 × 10−6 kg−1, 2.541 × 10−6 kg s−1, 3.112 × 10−6 kg s−1) and different heat fluxes (300 kW m−2, 400 kW m−2, 500 kW m−2) with different flow boiling models are used. The vapour fraction estimation was done by image processing in MATLAB program and compared with various mass flow rate and heat flux. It well validated with the published literature. An onset of nucleate boiling point position is estimated with same time step, and uncertainties of the numerical simulation were less than 2.5% at the lowest mass flow rate. The result shows that the vapour fraction in the microchannel increases with an increase in mass flow rate and heat flux. Similarly, the model’s heat transfer rate compared with the same mass flow rate and heat flux. The mixture model is best to estimate of vapour fraction compared to other models. The estimated vapour fraction values are 0.2950, 0.1848 and 0.1726 for MM, VOF and EM respectively. The heat transfer coefficient value for the mixture model is 20.381 kW m−2. Its value was very higher compared to other models because of the increase in fluid temperature difference at constant heat flux. This comparison can be used to provide design guidelines by selecting proper model for simulation work and minimize the complexity and wastage time.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

VOF:

Volume of fluid

MM:

Mixture model

EM:

Eulerian model

PISO:

Pressure implicit with splitting operations

PRESTO:

Pressure staggering options

QUICK:

Quadratic upstream interpolation for convective kinematics

RPI:

Rensselaer Polytechnical Institute (RPI) wall boiling model

ONB:

Onset of nucleate boiling

CHF:

Critical heat flux

M qp :

Mass transfer from phase q to phase p (kg s−1)

M pq :

Mass transfer from phase p to phase q (kg s−1)

E q :

Energy of the phase (J s−1)

K eff :

Effective thermal conductivity (W m−1 K−1)

V m :

Mass averaged velocity (m s−1)

F :

Body force (N)

h k :

Sensible enthalpy for phase (kJ kg−1)

E :

Energy (J s−1)

V dr :

Drift velocity for secondary phase k (m s−1)

F lift :

Lift force (N)

S q :

Sources of enthalpy (J kg−1)

Q pq :

Intensity heat phase p to phase q (J s−1)

C pl :

Liquid specific heat (J kg−1 K−1)

C pv :

Vapour specific heat (J kg−1 K−1)

C ps :

Specific heat (J kg−1 K−1)

h lv :

Enthalpy (kJ kg−1)

k l :

Liquid thermal conductivity (W m−1 K−1)

k v :

Vapour thermal conductivity (W m−1 K−1)

k s :

Solid thermal conductivity (W m−1 K−1)

α q :

Phase volume fraction (–)

α k :

Volume fraction of phase K (–)

μ :

Dynamics viscosity of phase (N s m−2)

μ l :

Liquid dynamics viscosity (N s m−2)

μ V :

Vapour dynamics viscosity (N s m−2)

µ m :

Viscosity of the mixture (N s m−2)

ρ :

Density of phases (kg m−3)

ρ m :

Mixture density (kg m−3)

ρ l :

Liquid density (kg m−3)

ρ v :

Vapour density (kg m−3)

ρ s :

Solid density (kg m−3)

σ :

Surface tension (N m−1)

ρ r :

ρlv (–)

x :

Vapour quality (–)

α :

Void fraction (–)

μ r :

μl/μv (–)

X r :

(1 − x)/x (–)

X tt :

Lockhart–Martinelli correlating parameter (–)

ϕ :

Diameter (m)

References

  1. Deb UK, Chayantrakom K, Lenbury Y. Comparison of single phase and two phase flow dynamics in the HLTP for microalgae culture. Int J Math Comput Simul. 2012;6:496–502.

    Google Scholar 

  2. Shkarah AJ, Sulaiman MY, Bin MR, Ayob HJ. A 2D numerical simulation for nucleation in flow boiling in microchannel heat sink. Sci Int. 2015;27:365–9.

    Google Scholar 

  3. Harirchian T, Garimella SV. Effects of channel dimension, heat flux, and mass flux on flow boiling regimes in microchannels. Int J Multiph Flow. 2009;35:349–62. https://doi.org/10.1016/j.ijmultiphaseflow.2009.01.003.

    Article  CAS  Google Scholar 

  4. Sharma JP, Sharma A, Jilte RD, Kumar R, Ahmadi MH. A study on thermo hydraulic characteristics of fluid flow through microchannels. J Therm Anal Calorim. 2019;1:1–32. https://doi.org/10.1007/s10973-019-08741-4.

    Article  CAS  Google Scholar 

  5. Prajapati YK, Bhandari P. Flow boiling instabilities in microchannels and their promising solutions—a review. Exp Therm Fluid Sci. 2017;88:576–93. https://doi.org/10.1016/j.expthermflusci.2017.07.014.

    Article  CAS  Google Scholar 

  6. Kumar P. Numerical investigation of fluid flow and heat transfer in trapezoidal microchannel with groove structure. Int J Therm Sci. 2019;136:33–43. https://doi.org/10.1016/j.ijthermalsci.2018.10.006.

    Article  Google Scholar 

  7. Narendran G, Natarajan G, Perumal DA. A review on recent advances in microchannel heat sink configurations. Recent Pat Mech Eng. 2018;11:190–215.

    Article  Google Scholar 

  8. Abdel Aziz O, Aute V, Radermacher R. Effect of void fraction model on the dynamic performance of moving boundary heat exchanger. Int Refrig Air Cond. 2008;1:1–8.

    Google Scholar 

  9. Colombo M, Thakrar R, Fairweather M, Walker SP. Assessment of semi-mechanistic bubble departure diameter modelling for the CFD simulation of boiling flows. Nucl Eng Des. 2019;344:15–27. https://doi.org/10.1016/j.nucengdes.2019.01.014.

    Article  CAS  Google Scholar 

  10. Xin RC, Awwad A, Dong ZF, Ebadian MA. An experimental study of single-phase and two-phase flow pressure drop in annular helicoidal pipes. Int J Heat Fluid Flow. 1997;18:482–8.

    Article  CAS  Google Scholar 

  11. Lu C, Kong R, Qiao S, Larimer J, Kim S, Bajork S, Tien K. Frictional pressure drop analysis for horizontal and vertical air-water two phase flows in different pipe sizes. Nucl Eng Des. 2018;332:147–61. https://doi.org/10.1016/j.nucengdes.2018.03.036.

    Article  CAS  Google Scholar 

  12. Choi K, Pamitrana AS, Young C, Taek J. Boiling heat transfer of R-22, R-134a, and CO2 in horizontal smooth mini channels. Int J Refrig. 2007;30:1336–46. https://doi.org/10.1016/j.ijrefrig.2007.04.007.

    Article  CAS  Google Scholar 

  13. Chen S, Liu D, Xiao Y, Gu H. Experimental study on onset of nucleate boiling and flow boiling heat transfer in a 5 × 5 rod bundle at low flow rate. Int J Heat Mass Transf. 2019;137:727–39. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.156.

    Article  Google Scholar 

  14. Talley JD, Worosz T, Kim S. Characterization of horizontal air-water two phase flow in a round pipe part II: measurement of local two phase parameters in bubbly flow. Int J Multiph Flow. 2015;76:223–36. https://doi.org/10.1016/j.ijmultiphaseflow.2015.06.012.

    Article  CAS  Google Scholar 

  15. Kneer A, Wirtz M, Laufer T, Nestler B, Barbe S. Experimental investigations on pressure loss and heat transfer of two phase carbon dioxide flow in a horizontal circular pipe of 0.4 mm diameter. Int J Heat Mass Transf. 2018;119:828–40. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.146.

    Article  CAS  Google Scholar 

  16. Zhang X, ChunLi R, Zheng Q. Analysis and simulation of high-power LED array with microchannel heat sink. Berlin: Springer; 2013. p. 191–5. https://doi.org/10.1007/s40436-013-0027-0.

    Book  Google Scholar 

  17. Soh GY, Yeoh GH, Timchenko V. Improved volume of fluid (VOF) model for predictions of velocity fields and droplet lengths in microchannels. Flow Meas Inst. 2016;51:105–15. https://doi.org/10.1016/j.flowmeasinst.2016.09.004.

    Article  Google Scholar 

  18. Xie X, Liu H, He C, Zhang B, Chen Q, Pan M. Deciphering the heat and mass transfer behaviors of staggered tube bundles in a closed wet cooling tower using a 3-D VOF model. Appl Therm Eng. 2019;161:1–17. https://doi.org/10.1016/j.applthermaleng.2019.114202.

    Article  Google Scholar 

  19. Setyawan A, Indarto I, Aan D. Experimental investigations of the circumferential liquid film distribution of air-water annular two phase flow in a horizontal pipe. Exp Therm Fluid Sci. 2017;85:95–118. https://doi.org/10.1016/j.expthermflusci.2017.02.026.

    Article  Google Scholar 

  20. Alugoju UK, Manmode R, Dubey SK, Javed A. Numerical modelling of flow boiling in expanding micro channel with non-uniform heat flux. J Phys: Conf Ser. 2019;1:1–9. https://doi.org/10.1088/1742-6596/1276/1/012045.

    Article  CAS  Google Scholar 

  21. Lorbek L, Kuhelj A, Dular M, Kitanovski A. Two phase flow patterns in adiabatic refrigerant flow through capillary tubes. Int J Refrig. 2020;1:1–19. https://doi.org/10.1016/j.ijrefrig.2020.02.030.

    Article  CAS  Google Scholar 

  22. Liu B, Liu X, Lu C, Godbole A, Michal G, Tieu AK. A CFD decompression model for CO2 mixture and the influence of non-equilibrium phase transition. Appl Energy. 2018;2018(227):516–24. https://doi.org/10.1016/j.apenergy.2017.09.016.

    Article  CAS  Google Scholar 

  23. Braz Filho FA, Ribeiro GB, Caldeira AD. Prediction of sub cooled flow boiling characteristics using two-fluid Eulerian CFD model. Nucl Eng Des. 2016;308:30–7. https://doi.org/10.1016/j.nucengdes.2016.08.016.

    Article  CAS  Google Scholar 

  24. Li H, Unekar H, Vasquez SA, Muralikrishnan R. Prediction of boiling and critical heat flux using an Eulerian multiphase boiling model. IMECE. 2011;2011:1–14.

    Google Scholar 

  25. Mimouni S, Benguigui W, Lavieville J, Merigoux N, Guingo M, Baudry C, Marfaing O. New nucleation boiling model devoted to high pressure flows. In: ICMF 2016—9th international conference on multiphase flow; 2016. p. 1–6.

  26. Qiu JT, Yang CJ, Dong XQ, Wang ZL, Li W, Noblesse F. Numerical simulation and uncertainty analysis of an axial-flow water jet pump. J Mar Sci Eng. 2018;2018(6):71. https://doi.org/10.3390/jmse6020071.

    Article  Google Scholar 

  27. Ramalingam K, Kandasamy A, Balasubramanian D, Palani M, Subramanian T, Varuvel EG, Viswanathan K. Forecasting of an ANN model for predicting behaviour of diesel engine energised by a combination of two low viscous biofuels. Environ Sci Pollut Res. 2020;27:24702–22. https://doi.org/10.1007/s11356-019-06222-7.

    Article  CAS  Google Scholar 

  28. Thiyagarajan S, Sonthalia A, Geoa VE, Prakash T, Karthickeyan V, Ashokd B, Nanthagopal K, Dhinesh B. Effect of manifold injection of methanol/n-pentanol in safflower biodiesel fuelled CI engine. Fuel. 2020;261:1–9. https://doi.org/10.1016/j.fuel.2019.116378.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge CFD Centre, SRMIST Kattankulathur for numerical simulations provides the simulation facility. Besides, the authors would like to thank the Management, SRMIST Kattankulathur for their continued support.

Funding

This study was supported by CFD Center, Department of mechanical engineering, Kattankulathur, Chengalpattu District - 603 203, Tamil Nadu, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumar Pankaj.

Ethics declarations

Conflict of interest

We declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeyaraj, T., Pankaj, K. Numerical investigation of flow boiling characteristics of water in a rectangular microchannel. J Therm Anal Calorim 147, 579–598 (2022). https://doi.org/10.1007/s10973-020-10231-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10231-x

Keywords

Navigation