Skip to main content
Log in

Crystallization behavior of zinc oxide/poly(lactic acid) nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, films of commercial PLA Ingeo 4043D with nano-zinc oxide particles (nano-ZnO) with average diameter around 100 nm and ZnO concentrations of 0.1, 0.25, 0.3 and 0.5 mass% were prepared by flat die extrusion. The addition of nano-ZnO had an objective to promote the crystallization of PLA, but it decreased the thermal stability of the films. Both neat PLA and PLA/nano-ZnO composites films did not crystallize during the cooling, but crystallize during a first heating, showing a cold crystallization process, which was significantly influenced by the heating rate. A low chain mobility was evidenced by the values of relaxation time (T1H). This low chain mobility avoided the high degree of crystallization of the films which were predominantly amorphous. For all films, an enthalpic relaxation phenomenon was detected during the first heating. The glass transition temperature (Tg) was shifted to higher values as the heating rate and nanofiller content are increased. Addition of nano-ZnO in PLA films did not increase their crystallinity, indicating that it is not an effective nucleating agent for this low-crystallinity PLA grade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jayaramudu J, Das K, Sonakshi M, Reddy GSM, Aderibigbe B, Sadiku R, Sinharay S. Structure and properties of highly toughened biodegradable polylactide/ZnO biocomposite films. Int J Biol Macromol. 2014;64:428–34.

    Article  CAS  Google Scholar 

  2. Murariu M, Dubois P. PLA composites: from production to properties. Adv Drug Deliv Rev. 2016;107:17–46.

    Article  CAS  Google Scholar 

  3. Scaffaro R, Lopresti F, Botta L. PLA based biocomposites reinforced with Posidonia oceanica leaves. Compos Part B Eng. 2018;139:1–11.

    Article  CAS  Google Scholar 

  4. Sarasua JR, Prudhomme RE, Wisnieski M, Borgne AL, Spassky N. Crystallization and melting behavior of polylactides. Macromolecules. 1998;31:3895–905.

    Article  CAS  Google Scholar 

  5. Bojda J, Piorkowska E. Shear-induced nonisothermal crystallization of two grades of PLA. Polym Test. 2016;50:172–81.

    Article  CAS  Google Scholar 

  6. Rosli NA, Ahmad I, Anuar FH, Abdullah I. Mechanical and thermal properties of natural rubber-modified poly(lactic acid) compatibilized with telechelic liquid natural rubber. Polym Test. 2016;54:196–202.

    Article  CAS  Google Scholar 

  7. Rahman MM, Islam MS, Li GS. Development of PLA/CS/ZnO nanocomposites and optimization its mechanical, thermal and water absorption properties. Polym Test. 2018;68:302–8.

    Article  CAS  Google Scholar 

  8. Li YQ, Fu SY, Mai YW. Preparation and characterization of transparent ZnO/epoxy nanocomposites with high-UV shielding efficiency. Polymer. 2006;47:2127–32.

    Article  CAS  Google Scholar 

  9. Saeidlou S, Huneault MA, Li H, Park CB. Poly(lactic acid) crystallization. Prog Polym Sci. 2012;37:1657–77.

    Article  CAS  Google Scholar 

  10. Ahmed J, Arfat YA, Attar HA, Auras R, Ejaz M. Rheological, structural, ultraviolet protection and oxygen barrier properties of linear low-density polyethylene films reinforced with zinc oxide (ZnO) nanoparticles. Food Packag Shelf Life. 2017;13:20–6.

    Article  Google Scholar 

  11. Zhou Y, Lei L, Yang B, Li J, Ren J. Preparation and characterization of polylactic acid (PLA) carbon nanotube nanocomposites. Polym Test. 2018;68:34–8.

    Article  CAS  Google Scholar 

  12. Dastafkan K, Obeydavi AK, Rahimi M. Crystallization and solid solution attainment of samarium doped ZnO nanorods via a combined ultrasonic-microwave irradiation approach. Ultrason Sonochem. 2018;42:97–111.

    Article  CAS  Google Scholar 

  13. Hess S, Demir MM, Yakutkin V, Baluschev S, Wegner G. Investigation of oxygen permeation through composites of PMMA and surface -modified ZnO nanoparticles. Macromol Rapid Commun. 2009;30:394–401.

    Article  CAS  Google Scholar 

  14. Ye D, Xiao C, Qi R, Jiang P. Preparation and characterization of PLA/ZnS nanocomposites via an in situ solvothermal process. J Appl Polym Sci. 2012;125:E117–24.

    Article  CAS  Google Scholar 

  15. Bustos-Torres KA, Vazquez-Rodriguez S, Cruz AM, Sepulveda-Guzman S, Benavides R, Lopez-Gonzalez R, Torres-Martínez LM. Influence of the morphology of ZnO nanomaterials on photooxidation of polypropylene/ZnO composites. Mat Sci Semicon Proc. 2017;68:217–25.

    Article  CAS  Google Scholar 

  16. Rodríguez-Tobías H, Morales G, Grande D. Improvement of mechanical properties and antibacterial activity of electrospun poly(d,l-lactide)-based mats by incorporation of ZnO-graft-poly(d,l-lactide) nanoparticles. Mat Chem Phys. 2016;182:324–31.

    Article  CAS  Google Scholar 

  17. Fortunati E, Armentano I, Zhou Q, Puglia D, Terenzi A, Berglund LA, Kenny JM. Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polym Degrad Stabil. 2012;97:2027–36.

    Article  CAS  Google Scholar 

  18. Wu D, Wu L, Wu L, Xu B, Zhang Y, Zhang M. Nonisothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites. J Polym Sci Pol Phys. 2007;45:1100–13.

    Article  CAS  Google Scholar 

  19. Kratochvıl J, Kelnar I. Non-isothermal kinetics of cold crystallization in multicomponent PLA/thermoplastic polyurethane/nanofiller system. J Therm Anal Calorim. 2017;130:1043–52.

    Article  CAS  Google Scholar 

  20. Lai XL, Yang W, Wang Z, Shi DW, Liu ZY, Yang MB. Enhancing crystallization rate and melt strength of PLLA with four-arm PLLA grafted silica: the effect of molecular weight of the grafting PLLA chains. J Appl Polym Sci. 2017;135:45675.

    Article  CAS  Google Scholar 

  21. Basu A, Nazarkovsky M, Ghadi R, Khan W, Domb AJ. Poly(lactic acid)-based nanocomposites. Polym Adv Tech. 2016;28:919–30.

    Article  CAS  Google Scholar 

  22. Brüster B, Montesinos A, Reumaux P, Pérez-Camargo RA, Mugica A, Zubitur M, Müller AJ, Dubois P, Addiego F. Crystallization kinetics of polylactide: reactive plasticization and reprocessing effects. Polym Degrad Stabil. 2018;148:56–66.

    Article  CAS  Google Scholar 

  23. Qu M, Tu H, Amarante M, Song YQ, Zhu SS. Zinc oxide nanoparticles catalyze rapid hydrolysis of poly(lactic acid) at low temperatures. J Appl Polym Sci. 2013;131:40287.

    Google Scholar 

  24. Murariu M, Doumbia A, Bonnaud L, Dechief AL, Paint Y, Ferreira M, Camoagne C, Devaux E, Dubois P. High-performance polylactide/ZnO nanocomposites designed for films and fibers with special end-use properties. Biomacromol. 2011;12:1762–71.

    Article  CAS  Google Scholar 

  25. Pantani R, Gorrasi G, Vigliotta G, Murariu M, Dubois P. PLA-ZnO nanocomposite films: water vapor barrier properties and specific end-use characteristics. Eur Polym J. 2013;49:3471–82.

    Article  CAS  Google Scholar 

  26. Birajdar SD, Bhagwat V, Shinde AB, Jadhav KM. Effect of Co 2+ ions on structural, morphological and optical properties of ZnO nanoparticles synthesized by sol–gel auto combustion method. Mat Sci Semicon Proc. 2016;41:441–9.

    Article  CAS  Google Scholar 

  27. Dhole SG, Dake SA, Prajapati TA, Helambe SN. Effect of ZnO filler on structural and optical properties of polyaniline-ZnO nanocomposites. Procedia Manuf. 2018;20:127–34.

    Article  Google Scholar 

  28. Nofar M, Park CB. Polylactide crystallization kinetics in presence of dissolved gas, polylactide foams—fundamentals, manufacturing, and applications. Plast Des Libr. 2018. https://doi.org/10.1016/B978-0-12-813991-2.00004-4

    Article  Google Scholar 

  29. Brito LM, Chávez FV, Tavares MIB, Sebastião PJO. Molecular dynamic evaluation of starch-PLA blends nanocomposite with organoclay by proton NMR relaxometry. Polym Test. 2013;32:1181–5.

    Article  CAS  Google Scholar 

  30. Rodrigues EJR, Sebastião PJO, Tavares MIB. 1H time domain NMR real time monitoring of polyacrylamide hydrogels synthesis. Polym Test. 2017;60:396–404.

    Article  CAS  Google Scholar 

  31. Stueber D, Jehle S. Quantitative component analysis of solid mixtures by analyzing time domain 1H and 19F T1 saturation recovery curves (qSRC). J Pharm Sci. 2017;106:1828–38.

    Article  CAS  Google Scholar 

  32. Chimanowsky JP Jr, Pinto R, Neto CI, Tavares MIB. NMR evaluation of polystyrene nanocomposites degradated by repeated extrusion processing. Polym Degrad Stabil. 2015;118:178–87.

    Article  CAS  Google Scholar 

  33. Surana R, Pyne A, Rani M, Suryanarayanan R. Measurement of enthalpic relaxation by differential scanning calorimetry-effect of experimental conditions. Thermochim Acta. 2005;433:173–82.

    Article  CAS  Google Scholar 

  34. Aou K, Hsu SL, Kleiner LW, Tang FW. Roles of conformational and configurational defects on the physical aging of amorphous poly(lactic acid). J Phys Chem B. 2007;111:12322–7.

    Article  CAS  Google Scholar 

  35. Pan P, Zhu B, Inoue Y. Enthalpy relaxation and embrittlement of poly(l-lactide) during physical aging. Macromolecules. 2007;40:9664–71.

    Article  CAS  Google Scholar 

  36. Ravari F, Mashak A, Nekoomanesh M, Mobedi H. Non-isothermal cold crystallization behavior and kinetics of poly(l-lactide): effect of l-lactide dimer. Polym Bull. 2013;70:2569–86.

    Article  CAS  Google Scholar 

  37. Jandas PJ, Mohanty S, Nayak SK. Cold crystallization kinetics of biodegradable polymer blend; controlled by reactive interactable and nano nucleating agent. Adv Comp Hyb Mat. 2018;1:624–34.

    Article  CAS  Google Scholar 

  38. Pluta M. Melt compounding of polylactide/organoclay: structure and properties of nanocomposites. J Polym Sci Polym Phys. 2006;44:3392–405.

    Article  CAS  Google Scholar 

  39. Ortenzi MA, Gazzotti S, Marcos B, Antenucci S, Camazzola S, Piergiovanni L, Farina H, Di Silvestro G, Verotta L. Synthesis of polylactic acid initiated through biobased antioxidants: towards intrinsically active food packaging. Polymers. 2020;12:1183.

    Article  CAS  Google Scholar 

  40. Di Lorenzo ML, Androsch R. Influence of α′-/α-crystal polymorphism on properties of poly(l-lactic acid). Polym Int. 2019;68:320–34.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Grant 307364/2018-6), FAPERJ (E-26/202.538/2019) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)/Grant Number: 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Ines Bruno Tavares.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Cruz Faria, É., Dias, M.L., Ferreira, L.M. et al. Crystallization behavior of zinc oxide/poly(lactic acid) nanocomposites. J Therm Anal Calorim 146, 1483–1490 (2021). https://doi.org/10.1007/s10973-020-10166-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10166-3

Keywords

Navigation