Skip to main content
Log in

Kinetics and thermodynamical evaluation of electrode material of discarded lithium-ion batteries and its impact on recycling

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The investigation of decomposition thermodynamics and kinetics of active electrode materials is an important tool in the development of recycling techniques for discarded lithium-ion batteries. The knowledge of thermal decomposition kinetics and thermodynamics aids the understanding and improving thermal response and can provide guidelines for the design of the thermal recycling process. Evaluation of thermal response, kinetics parameter, and thermodynamic parameters, which include activation energy, change in Gibbs free energy (ΔG), change in enthalpy (ΔH), change in entropy (ΔS) were carried out using isoconversional kinetic methods employing thermogravimetric. Comparative analysis of thermal decomposition kinetics, experimental, and indigenous carbothermal reduction in the single (LiCoO2/C) and the mixed phases cathode (LiCoO2, LiMn2O4, LiNi0.5Mn1.5O4/C) active electrode material was also carried out. The average activation energy for the thermal dissociation of mixed cathode active material is estimated as 187.6 kJ mol−1, and ΔG, ΔH, ΔS are 243 kJ mol−1, 179.9 kJ mol−1, − 0.06 kJ mol−1 K−1, respectively. Thermal dissociation and carbothermal reduction in active electrode material was investigated in 600–1000 °C and found that active electrode material decomposes and reduces above 600 °C. A simple processing comprising reduction followed by water leaching and magnetic separation was used for metallic recovery. The optimum magnetic product of mix phase cathodeactive material comprises Co: 61%, Mn: 19%, Ni: 7%, O: 13%, and lithium was recovered as Li2CO3 with Li extraction ~ 80%.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

LIBs:

Lithium-ion batteries

LCO:

LiCoO2

LMnO:

LiMn2O4

LNMO:

LiNi0.5Mn1.5O4

TGA:

Thermogravimetric Analysis

DTG:

Derivative thermogravimetric analysis

KAS:

Kissinger–Akahira–Sunose method

OFW:

Ozawa–Flynn–Wall method

L1:

Mixed electrode active material (LCO and C)

L3:

Mixed electrode active material (LCO, LMnO, LNMO, and C)

References

  1. Zeng X, Li J, Singh N. Recycling of spent lithium-ion battery: a critical review. Crit Rev Environ Sci Technol. 2014;44:1129–65.

    Article  CAS  Google Scholar 

  2. Pinegar H, Smith YR. End-of-life lithium-ion battery component mechanical liberation and separation. J Sustain Metall. 2019;71:4447–56.

    CAS  Google Scholar 

  3. J. Mitch. It’s time to get serious about recycling lithium-ion batteries. C&EN Chem. Eng. news. 2019; 97: 1. https://cen.acs.org/materials/energy-storage/time-serious-recycling-lithium/97/i28.

  4. Ordoñez J, Gago EJ, Girard A. Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renew Sustain Energy Rev. 2016;60:195–205.

    Article  Google Scholar 

  5. Sunil SR, Dhawan N. Thermal processing of spent Li-ion batteries for extraction of lithium and cobalt–manganese values. Trans Indian Inst Met. 2019;72:3035–44.

    Article  CAS  Google Scholar 

  6. Indian Bureau of Mines, Indian Minerals Yearbook, 2018; 57. https://ibm.gov.in/index.php?c=pages&m=index&id=1373.

  7. Winslow KM, Laux SJ, Townsend TG. A review on the growing concern and potential management strategies of waste lithium-ion batteries. Resour Conserv Recycl. 2018;129:263–77.

    Article  Google Scholar 

  8. Meshram P, Pandey BD, Mankhand TR, Deveci H. Acid baking of spent lithium ion batteries for selective recovery of major metals: a two-step process. J Ind Eng Chem. 2016;43:117–26.

    Article  CAS  Google Scholar 

  9. Sunil SR, Vishvakarma S, Barnwal A, Dhawan N. Processing of spent Li-ion batteries for recovery of cobalt and lithium values. JOM. 2019;71:4659–65.

    Article  Google Scholar 

  10. Pindar S, Dhawan N. Carbothermal reduction of spent mobile phones batteries for the recovery of lithium, cobalt, and manganese values. JOM. 2019;71:4483–91.

    Article  CAS  Google Scholar 

  11. Yun L, Linh D, Shui L, Peng X, Garg A, LE MLP, Sandoval J. Metallurgical and mechanical methods for recycling of lithium-ion battery pack for electric vehicles. Resour Conserv Recycl. 2018;136:198–208.

    Article  Google Scholar 

  12. Nayaka GP, Pai KV, Santhosh G, Manjanna J. Recovery of cobalt as cobalt oxalate from spent lithium ion batteries by using glycine as leaching agent. J Environ Chem Eng. 2016;4(2):2378–83.

    Article  CAS  Google Scholar 

  13. Liu P, Xiao L, Tang Y, Chen Y, Ye L, Zhu Y. Study on the reduction roasting of spent LiNixCoyMnzO2 lithium-ion battery cathode materials. J Therm Anal Calorim. 2019;136:1323–32.

    Article  CAS  Google Scholar 

  14. Liu P, Xiao L, Chen Y, Tang Y, Wu J, Chen H. Recovering valuable metals from LiNixCoyMn1−x−yO2 cathode materials of spent lithium ion batteries via a combination of reduction roasting and stepwise leaching. J Alloys Compd. 2019;783:743–52.

    Article  CAS  Google Scholar 

  15. Huang Z, Ruan J, Yuan Z, Qiu R. Characterization of the materials in waste power banks and the green recovery process. ACS Sustain Chem Eng. 2018;6:3815–22.

    Article  CAS  Google Scholar 

  16. Xiao J, Li J, Xu Z. Novel approach for in situ recovery of lithium carbonate from spent lithium ion batteries using vacuum metallurgy. Environ Sci Technol. 2017;51:11960–6.

    Article  CAS  Google Scholar 

  17. Li J, Wang G, Xu Z. Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries. J Hazard Mater. 2016;302:97–104.

    Article  CAS  Google Scholar 

  18. Hu J, Zhang J, Li H, Chen Y, Wang C. A promising approach for the recovery of high value-added metals from spent lithium-ion batteries. J Power Sources. 2017;351:192–9.

    Article  CAS  Google Scholar 

  19. Xiao J, Li J, Xu Z. Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy. J Hazard Mater. 2017;338:124–31.

    Article  CAS  Google Scholar 

  20. Vishvakarma S, Dhawan N. Recovery of cobalt and lithium values from discarded Li-ion batteries. J Sustain Metall. 2019;5:204–9.

    Article  Google Scholar 

  21. Varma AK, Mondal P. Physicochemical characterization and pyrolysis kinetic study of sugarcane bagasse using thermogravimetric analysis. J Energy Resour Technol. 2016;138:052205.

    Article  Google Scholar 

  22. Criado J, Sánchez-Jiménez P, Pérez-Maqueda L. Critical study of the isoconversional methods of kinetic analysis. J Therm Anal Calorim. 2008;92:199–203.

    Article  CAS  Google Scholar 

  23. Biryan F, Pihtili G. Fabrication of a novel acrylate polymer bearing chalcone and amide groups and investigation of its thermal and isoconversional kinetic analysis. J Therm Anal Calorim. 2020;139:3857–70.

    Article  CAS  Google Scholar 

  24. Alaba PA, Popoola SI, Abnisal F. Thermal decomposition of rice husk: a comprehensive artificial intelligence predictive model. J Therm Anal Calorim. 2020;140:1811–23. https://doi.org/10.1007/s10973-019-08915-0.

    Article  CAS  Google Scholar 

  25. Manić N, Janković B, Dodevski V. Model-free and model-based kinetic analysis of Poplar fluff (Populus alba) pyrolysis process under dynamic conditions. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09675-y.

    Article  Google Scholar 

  26. Singh G, Varma AK, Almas S, Jana A, Mondal P, Seay J. Pyrolysis kinetic study of waste milk packets using thermogravimetric analysis and product characterization. J Mater Cycles Waste Manag. 2019;21:1350–60.

    Article  CAS  Google Scholar 

  27. Huang L, Liu J, He Y, Sun S, Chen J, Sun J, Kuo J. Thermodynamics and kinetics parameters of co-combustion between sewage sludge and water hyacinth in CO2/O2 atmosphere as biomass to solid biofuel. Bioresour Technol. 2016;218:631–42.

    Article  CAS  Google Scholar 

  28. Dhaundiyal A, Singh SB. The generalisation of a multi-reaction model for polynomial ramping of temperature. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09650-7.

    Article  Google Scholar 

  29. Xu Y, Chen B. Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresour Technol. 2013;146:485–93.

    Article  CAS  Google Scholar 

  30. Maia AAD, de Morais LC. Kinetic parameters of red pepper waste as biomass to solid biofuel. Bioresour Technol. 2016;204:157–63.

    Article  CAS  Google Scholar 

  31. Baruah U, Borphukan S, Saikia M, Saikia PJ, Baruah SD. Non-isothermal decomposition kinetics of in-chain functionalized poly(MMA-co-ethylene). J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09464-7.

    Article  Google Scholar 

  32. Wang Y, Liu S, Cheng Y. Thermal analysis and hazards evaluation for HTP-65 W through calorimetric technologies and simulation. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09630-x.

    Article  Google Scholar 

  33. Singh RK, Ruj B. Time and temperature depended fuel gas generation from pyrolysis of real world municipal plastic waste. Fuel. 2016;174:164–71.

    Article  CAS  Google Scholar 

  34. Huang X, Cao JP, Zhao XY, Wang JX, Fan X, Zhao YP, Wei XY. Pyrolysis kinetics of soybean straw using thermogravimetric analysis. Fuel. 2016;169:93–8.

    Article  CAS  Google Scholar 

  35. He Y, Chang C, Li P, Han X, Li H, Fang S, Ma X. Thermal decomposition and kinetics of coal and fermented cornstalk using thermogravimetric analysis. Bioresour Technol. 2018;259:294–303.

    Article  CAS  Google Scholar 

  36. Liu W, Zhong X, Han J, Qin W, Liu T, Zhao C, Chang Z. Kinetic study and pyrolysis behaviors of spent LiFePO4 batteries. ACS Sustain Chem Eng. 2018;7:1289–99.

    Article  Google Scholar 

  37. Ouyang D, He Y, Chen M, Liu J, Wang J. Experimental study on the thermal behaviors of lithium-ion batteries under discharge and overcharge conditions. J Therm Anal Calorim. 2018;132:65–75.

    Article  CAS  Google Scholar 

  38. Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C. Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources. 2012;208:210–24.

    Article  CAS  Google Scholar 

  39. Bach QV, Chen WH. Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): a state-of-the-art review. Bioresour Technol. 2017;246:88–100.

    Article  CAS  Google Scholar 

  40. Ye G, Luo H, Ren Z, Ahmad MS, Liu CG, Tawab A, Mehmood MA. Evaluating the bioenergy potential of Chinese liquor-industry waste through pyrolysis, thermogravimetric, kinetics and evolved gas analyses. Energy Convers Manag. 2018;163:13–21.

    Article  CAS  Google Scholar 

  41. Kim YS, Kim YS, Kim SH. Investigation of thermodynamic parameters in the thermal decomposition of plastic waste–waste lube oil compounds. Environ Sci Technol. 2010;44:5313–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding received from the Indian Institute of Technology, Roorkee, under Faculty Initiation Grant; FIG-100714 and MHRD-UAY grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Dhawan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pindar, S., Dhawan, N. Kinetics and thermodynamical evaluation of electrode material of discarded lithium-ion batteries and its impact on recycling. J Therm Anal Calorim 146, 1819–1831 (2021). https://doi.org/10.1007/s10973-020-10139-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10139-6

Keywords

Navigation