Skip to main content
Log in

Parametric study and exergy analysis of the gasification of sugarcane bagasse in a pressurized circulating fluidized bed gasifier

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present work is to study the effect of pressure on the gasification of sugarcane bagasse in a pressurized circulating fluidized bed reactor. The range of operating pressure is maintained at 1–4 bar, and thereby the composition of generated syngas is measured with the help of gas chromatography. The gasification parameters like dry gas yield, lower heating value (LHV), cold gas efficiency (CGE), and carbon conversion efficiency (CCE) have been calculated from the syngas composition. The output yields some interesting results, i.e., with the increase in pressure from 1 to 4 bar, and there is an increment of concentration value by 26% for CH4 as well as CO2. However, a decreasing trend of H2 concentration (7.62–6.75% by volume) is observed for the same pressure rise. In addition, it has been observed a little deviation in the trend for CO (16.39–16.86%), which bears an increasing trend from a pressure of 1–2 bar and a decreasing trend thereafter. Following a similar trend for CO, the LHV first increases from 4013 to 4200 kJ Nm−3 with an increase in pressure from 1 to 2 bar and thereafter decreases gradually to 4081 kJ Nm−3 at a pressure of 4 bar. Apart from these parameters, gas yield, CCE, and CGE values imparted positive effects with pressure rise, and the magnitudes increased from 0.93 to 1.27 Nm3 kg−1, 38.3–57.5 and 23.3–32.3%, respectively, with an increase in pressure from 1 to 4 bar. The exergy destruction and exergy efficiency are observed to be 140 MW and 76% at 4 bar operating pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

H2 :

Concentration of hydrogen in the syngas

N2 :

Concentration of nitrogen in the syngas

C:

Content of carbon in the feed material

CO:

Concentration of carbon monoxide in the syngas

CO2 :

Concentration of carbon dioxide in the syngas

CH4 :

Concentration of methane in the syngas

CmHn :

Concentration of higher hydrocarbon in the syngas

c p :

Constant pressure specific heat capacity (kJ kmol−1 K−1)

ER:

Equivalence ratio

h :

Specific enthalpy (kJ kmol−1)

X ash :

Ash content of the feed material

Y :

Dry gas yield (Nm3 kg−1)

Q a :

Mass flow rate of air (Nm3 h−1)

M b :

Mass flow rate of feed material (kg h−1)

LHV:

Lower heating value (kJ Nm−3)

HHV:

Higher heating value (kJ Nm−3)

\( {\dot{\text{E}}\text{n}} \) :

Energy rate (MW)

\( {\dot{\text{E}}\text{x}}_{{{\text{feed}}\,{\text{material}}}} \) :

Exergy of feed material

\( {\dot{\text{E}}\text{x}}_{\text{air}} \) :

Exergy of the fluidization air

\( {\dot{\text{E}}\text{x}}_{{{\text{heat}}\,{\text{input}}}} \) :

Exergy of the electrical heat input

\( {\dot{\text{E}}\text{x}}_{\text{Syngas}} \) :

Exergy of the syngas

\( {\dot{\text{E}}\text{x}}_{\text{Char}} \) :

Exergy of the char

\( {\dot{\text{E}}\text{x}}_{\text{tar}} \) :

Exergy of the tar

\( \dot{I}_{\text{gasifier}} \) :

Irreversibility of the gasifier

β :

Quality of feed material

References

  1. Karmakar MK, Datta AB. Generation of hydrogen rich gas through fluidized bed gasification of biomass. Bioresour Technol. 2011;102:1907–13.

    Article  CAS  Google Scholar 

  2. Tursunov O, Zubek K, Czerski G, Dobrowolski J. Studies of CO2 gasification of the Miscanthus giganteus biomass over Ni/Al2O3–SiO2 and Ni/Al2O3–SiO2 with K2O promoter as catalysts. J Therm Anal Calorim. 2020;139:3481–92.

    Article  CAS  Google Scholar 

  3. Abdoulmoumine N, Kulkarni A, Adhikari S. Effects of temperature and equivalence ratio on pine syngas primary gases and contaminants in a bench-scale fluidized bed gasifier. Ind Eng Chem Res. 2014;53:5767–77.

    Article  CAS  Google Scholar 

  4. Suksuwan W, Wae M, Mel M. Fluid development of mini pilot fluidized bed gasifier for industrial approach: preliminary study based on continuous operation Akademia Baru combust fine solid fuels having non-uniform size, is applied. Akademia Baru J Adv Res. 2018;1:35–43.

    Google Scholar 

  5. Naidu VS, Aghalayam P, Jayanti S. Evaluation of CO2 gasification kinetics for low-rank Indian coals and biomass fuels. J Therm Anal Calorim. 2016;123:467–78.

    Article  CAS  Google Scholar 

  6. Chen D, Bu C, Wang X, Zhang J, Kobayashi N, Piao G, et al. Gasification and combustion kinetics of a high-ash-fusion-temperature coal using thermogravimetric analysis. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09460-x.

    Article  Google Scholar 

  7. Wang Y, Wang Z, Huang J, Fang Y. Investigation into the characteristics of Na2CO3-catalyzed steam gasification for a high-aluminum coal char. J Therm Anal Calorim. 2018;131:1213–20.

    Article  CAS  Google Scholar 

  8. García-Ibañez P, Cabanillas A, Sánchez JM. Gasification of leached orujillo (olive oil waste) in a pilot plant circulating fluidised bed reactor. Preliminary results. Biomass Bioenergy. 2004;27:183–94.

    Article  Google Scholar 

  9. Li XT, Grace JR, Lim CJ, Watkinson AP, Chen HP, Kim JR. Biomass gasification in a circulating fluidized bed. Biomass Bioenergy. 2004;26:171–93.

    Article  CAS  Google Scholar 

  10. Doherty W, Reynolds A, Kennedy D. The effect of air preheating in a biomass CFB gasifier using ASPEN Plus simulation. Biomass Bioenergy. 2009;33:1158–67.

    Article  CAS  Google Scholar 

  11. Duan W, Yu Q. Thermodynamic analysis of hydrogen-enriched syngas generation coupled with in situ CO2 capture using chemical looping gasification method. J Therm Anal Calorim. 2018;131:1671–80.

    Article  CAS  Google Scholar 

  12. Cheng L, Basu P. Effect of pressure on loop seal operation for a pressurized circulating fluidized bed. Powder Technol. 1999;103:203–11.

    Article  CAS  Google Scholar 

  13. Xiao R, Zhang M, Jin B, Huang Y, Zhou H, Motta IL, et al. Equilibrium modeling of gasification: a free energy minimization approach and its application to a circulating fluidized bed coal gasifier. Biomass Bioenergy. 2018;53:433–45.

    Google Scholar 

  14. Srinivas T, Gupta AVSSKS, Reddy BV. Thermodynamic equilibrium model and exergy analysis of a biomass gasifier. J Energy Resour Technol. 2009;131:031801.

    Article  Google Scholar 

  15. Sahoo A, Ram DK. Gasifier performance and energy analysis for fluidized bed gasification of sugarcane bagasse. Energy. 2015;90:1420–5.

    Article  CAS  Google Scholar 

  16. Figueroa JEJ, Ardila YC, Filho RM, Maciel MRW. Fluidized bed reactor for gasification of sugarcane bagasse: distribution of syngas, bio-tar and char. Chem Eng Trans. 2014;37:229–34.

    Google Scholar 

  17. Pellegrini LF, de Oliveira S. Exergy analysis of sugarcane bagasse gasification. Energy. 2007;32:314–27.

    Article  CAS  Google Scholar 

  18. Ardila YC, Figueroa JEJ, Lunelli BH, Filho RM, Maciel MRW. Syngas production from sugar cane bagasse in a circulating fluidized bed gasifier using Aspen Plus™: modelling and simulation. Comput Aided Chem Eng. 2012;30:1093–7.

    Article  CAS  Google Scholar 

  19. Motta IL, Miranda NT, Maciel Filho R, Wolf Maciel MR. Sugarcane bagasse gasification: Simulation and analysis of different operating parameters, fluidizing media, and gasifier types. Biomass Bioenergy. 2019;122:433–45.

    Article  CAS  Google Scholar 

  20. Ptasinski KJ, Prins MJ, Pierik A. Exergetic evaluation of biomass gasification. Energy. 2007;32:568–74.

    Article  CAS  Google Scholar 

  21. Dhivagar R, Mohanraj M, Hidouri K, Belyayev Y. Energy, exergy, economic and enviro-economic (4E) analysis of gravel coarse aggregate sensible heat storage-assisted single-slope solar still. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09766-w.

    Article  Google Scholar 

  22. Zhang Y, Li B, Li H, Liu H. Exergy analysis of biomass gasification with steam/air: a comparison study. In: Proceedings of the 2010 international conference on digital manufacturing and automation ICDMA 2010, vol 1. 2010. pp. 678–81.

  23. Karamarkovic R, Karamarkovic V. Energy and exergy analysis of biomass gasification at different temperatures. Energy. 2010;35:537–49.

    Article  CAS  Google Scholar 

  24. Li G, Liu Z, Liu F, Yang B, Ma S, Weng Y, et al. Advanced exergy analysis of ash agglomerating fluidized bed gasification. Energy Convers Manag. 2019;199:111952.

    Article  CAS  Google Scholar 

  25. Martínez González A, Lesme Jaén R, Silva Lora EE. Thermodynamic assessment of the integrated gasification-power plant operating in the sawmill industry: an energy and exergy analysis. Renew Energy. 2020;147:1151–63.

    Article  Google Scholar 

  26. Mahapatro A, Mahanta P, Jana K. Hydrodynamic study of low-grade Indian coal and sawdust as bed inventory in a pressurized circulating fluidized bed. Energy. 2019;189:116234.

    Article  Google Scholar 

  27. Mahapatro A, Mahanta P. Gasification studies of low-grade Indian coal and biomass in a lab-scale pressurized circulating fl uidized bed. Renew Energy. 2020;150:1151–9.

    Article  CAS  Google Scholar 

  28. Zhang Y, Li B, Li H, Liu H. Thermodynamic evaluation of biomass gasification with air in autothermal gasifiers. Thermochim Acta. 2011;519:65–71.

    Article  CAS  Google Scholar 

  29. Li J, Li F, Liu W, Liu Z, Zhan H, Zhang Y, et al. Influence of pressure on fluidized bed gasifier: specific coal throughput and particle behavior. Fuel. 2018;220:80–8.

    Article  CAS  Google Scholar 

  30. Han L, Wang Q, Luo Z, Rong N, Deng G. H2 rich gas production via pressurized fluidized bed gasification of sawdust with in situ CO2 capture. Appl Energy. 2013;109:36–43.

    Article  CAS  Google Scholar 

  31. Kitzler H, Pfeifer C, Hofbauer H. Pressurized gasification of woody biomass-variation of parameter. Fuel Process Technol. 2011;92:908–14.

    Article  CAS  Google Scholar 

  32. Duan F, Jin B, Huang Y, Li B, Wu Y, Zhang M. Results of bituminous coal gasification upon exposure to a pressurized pilot-plant circulating fluidized-bed (CFB) reactor. Energy Fuels. 2010;24:3150–8.

    Article  CAS  Google Scholar 

  33. Gül S, Akgün F, Aydar E, Ünlü N. Pressurized gasification of lignite in a pilot scale bubbling fluidized bed reactor with air, oxygen, steam and CO2 agents. Appl Therm Eng. 2018;130:203–10.

    Article  Google Scholar 

  34. Yin XL, Wu CZ, Zheng SP, Chen Y. Design and operation of a CFB gasification and power generation system for rice husk. Biomass Bioenergy. 2002;23:181–7.

    Article  CAS  Google Scholar 

  35. Mayerhofer M, Mitsakis P, Meng X, De Jong W, Spliethoff H, Gaderer M. Influence of pressure, temperature and steam on tar and gas in allothermal fluidized bed gasification. Fuel. 2012;99:204–9.

    Article  CAS  Google Scholar 

  36. Fermoso J, Arias B, Gil MV, Plaza MG, Pevida C, Pis JJ, et al. Co-gasification of different rank coals with biomass and petroleum coke in a high-pressure reactor for H2-rich gas production. Bioresour Technol. 2010;101:3230–5.

    Article  CAS  Google Scholar 

  37. Xiao R, Zhang M, Jin B, Huang Y, Zhou H. High-temperature air/steam-blown gasification of coal in a pressurized spout-fluid bed. Energy Fuels. 2006;20:715–20.

    Article  CAS  Google Scholar 

  38. Li X, Grace JR, Watkinson AP, Lim CJ, Ergüdenler A. Equilibrium modeling of gasification: a free energy minimization approach and its application to a circulating fluidized bed coal gasifier. Fuel. 2001;80:195–207.

    Article  CAS  Google Scholar 

  39. Fermoso J, Arias B, Plaza MG, Pevida C, Rubiera F, Pis JJ, et al. High-pressure co-gasification of coal with biomass and petroleum coke. Fuel Process Technol. 2009;90:926–32.

    Article  CAS  Google Scholar 

  40. Zhang Y, Li B, Li H, Zhang B. Exergy analysis of biomass utilization via steam gasification and partial oxidation. Thermochim Acta. 2012;538:21–8.

    Article  CAS  Google Scholar 

  41. Manatura K, Lu JH, Wu KT, Te HsuH. Exergy analysis on torrefied rice husk pellet in fluidized bed gasification. Appl Therm Eng. 2017;111:1016–24.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abinash Mahapatro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahapatro, A., Kumar, A. & Mahanta, P. Parametric study and exergy analysis of the gasification of sugarcane bagasse in a pressurized circulating fluidized bed gasifier. J Therm Anal Calorim 141, 2635–2645 (2020). https://doi.org/10.1007/s10973-020-10108-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10108-z

Keywords

Navigation