Skip to main content
Log in

Gasification and combustion kinetics of a high-ash-fusion-temperature coal using thermogravimetric analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The gasification/combustion kinetics of a typical Chinese high-ash-fusion-temperature (AFT) coal char, Huainan (HN) coal char, are analyzed using a thermogravimetric analyzer in this paper. The carbon conversion rate and the gasification/combustion reaction rate characteristics of HN coal char are studied. The initial gasification/combustion reaction rates are also analyzed in this paper. Results show that at 1300 °C, the gasification and combustion processes are changed from the chemical reaction control zone to the pore diffusion control zone. Thus, 1300 °C is recommended as the gasification temperature of the non-slagging EFGs system using high-AFT HN coal. Based on the isothermal method, a complementary method of iso-conversional and model based is used to analyze the gasification and combustion kinetics of HN coal char. The gasification/combustion reaction order m and activation energy E of HN coal char are obtained by iso-conversional method. The kinetic model equation f(α) is obtained based on a modified master plot method. The kinetic exponent n and the pre-exponential factor k0 are obtained by model-based method. The results of this work provide the useful data for designing the non-slagging EFGs using high-AFT coals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sripada PP, Xu T, Kibria MA, Bhattacharya S. Comparison of entrained flow gasification behaviour of Victorian brown coal and biomass. Fuel. 2017;203:942–53.

    Article  CAS  Google Scholar 

  2. Collot A-G. Matching gasification technologies to coal properties. Int J Coal Geol. 2006;65(3):191–212.

    Article  CAS  Google Scholar 

  3. Tremel A, Stemann J, Herrmann M, Erlach B, Spliethoff H. Entrained flow gasification of biocoal from hydrothermal carbonization. Fuel. 2012;102(6):396–403.

    Article  CAS  Google Scholar 

  4. Ball M, Wietschel M. The hydrogen economy: opportunities and challenges. Cambridge University Press. 2009;4:66–7.

    Google Scholar 

  5. Xiao-Jiang WU, Zhang ZX, Gui-Lin P, Nobusuke K, Shigekatsu M, Yoshinori I. Gasification characteristics of coal with high ash fusion temperature in lab-scale down-flow gasifier. J Combust Sci Technol. 2009;15:182–6.

    Google Scholar 

  6. Xiao-Jiang WU, Zhang ZX, Gui-Lin P, Nobusuke K, Shigekatsu M, Yoshinori I. Experimental study on gasification reaction characteristics of chinese high ash fusion temperature coal with CO2 and steam at elevated temperature. Proc CSEE. 2007;27(32):24–8.

    Google Scholar 

  7. Liu H, Luo C, Masaomi T, Shigeyuki U, Toshinori K. Kinetics of CO2/char gasification at elevated temperatures. Part II: clarification of mechanism through modelling and char characterization. Fuel Process Technol. 2006;87(9):769–74.

    Article  CAS  Google Scholar 

  8. Liu H, Luo C, Kato S, Uemiya S, Kaneko M, Kojima T. Kinetics of CO2/Char gasification at elevated temperatures: part I: experimental results. Fuel Process Technol. 2006;87(9):775–81.

    Article  CAS  Google Scholar 

  9. Kajitani S, Suzuki N, Ashizawa M, Hara S. CO2 gasification rate analysis of coal char in entrained flow coal gasifier. Fuel. 2006;85(2):163–9.

    Article  CAS  Google Scholar 

  10. Kajitani S, Hara S, Matsuda H. Gasification rate analysis of coal char with a pressurized drop tube furnace. Fuel. 2002;81(5):539–46.

    Article  CAS  Google Scholar 

  11. Vyazovkin S, Wight C. Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids. Int Rev Phys Chem. 1998;17(3):407–33.

    Article  CAS  Google Scholar 

  12. Anca-Couce A, Berger A, Zobel N. How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme. Fuel. 2014;123:230–40.

    Article  CAS  Google Scholar 

  13. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.

    Article  CAS  Google Scholar 

  14. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B Polym Lett. 1966;4(5):323–8.

    Article  CAS  Google Scholar 

  15. Kissinger HE. Reaction kinetics in differential thermal analysis. Anall Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  16. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201(491):68–9.

    Article  CAS  Google Scholar 

  17. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. J Polym Sci Part B Polym Lett. 1965;3:917–20.

    Article  CAS  Google Scholar 

  18. Khawam A, Flanagan DR. Complementary use of model-free and modelistic methods in the analysis of solid-state kinetics. J Phys Chem B. 2005;109(20):10073–80.

    Article  CAS  Google Scholar 

  19. Gotor FJ, Criado JM, Malek J, Koga N. Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A. 2000;104(46):10777–82.

    Article  CAS  Google Scholar 

  20. Chen DD, Jiang XG, Lv S, Ma ZY, Yan JH, Yu XH, et al. Thermal treatment of Indonesian lignite washery tailing Part 2. Kinetic analysis. J Therm Anal Calorim. 2016;123(2):1735–42.

    Article  CAS  Google Scholar 

  21. Chen DD, Jiang XG, Lv S, Ma ZY, Yan JH, Yu XH, et al. Thermal treatment of Indonesian lignite washery tailing Part 1. Experimental. J Therm Anal Calorim. 2016;123(2):1727–33.

    Article  CAS  Google Scholar 

  22. Xiao H-m, Ma X-q, Lai Z-y. Isoconversional kinetic analysis of co-combustion of sewage sludge with straw and coal. Appl Energy. 2009;86(9):1741–5.

    Article  CAS  Google Scholar 

  23. Wang CA, Liu YH, Zhang XM, Che DF. A study on coal properties and combustion characteristics of blended coals in Northwestern China. Energy Fuels. 2011;25(8):3634–45.

    Article  CAS  Google Scholar 

  24. Tomaszewicz M, Tomaszewicz G, Sciazko M. Experimental study on kinetics of coal char–CO2 reaction by means of pressurized thermogravimetric analysis. J Therm Anal Calorim. 2017;130(3):2315–30.

    Article  CAS  Google Scholar 

  25. Hooshmand P, KhakRah H, Balootaki HK, et al. Recycling municipal solid waste utilizing gasification technology: a case study. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08986-z.

    Article  Google Scholar 

Download references

Acknowledgements

Financial supports are acknowledged by the China Postdoctoral Science Foundation (Grant No. 2018M642137), the Natural Science Foundation of Universities of Jiangsu Province (Grant No. 18KJB470015), the Science and Technology Major Project of Anhui Province (Grant No. 15czz02045-4) and the Natural Science Foundation of Jiangsu Province for Young Scientists of China (Grant No. BK20190708).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dandan Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Bu, C., Wang, X. et al. Gasification and combustion kinetics of a high-ash-fusion-temperature coal using thermogravimetric analysis. J Therm Anal Calorim 143, 3209–3220 (2021). https://doi.org/10.1007/s10973-020-09460-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09460-x

Keywords

Navigation