Skip to main content
Log in

Silver doping in lanthanum manganite materials: structural and electrical properties

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ag-doped LaMnO3 nanoparticles have been synthesized through sol–gel process using citric acid as a chelating agent. Silver effect on physicochemical properties was studied. The physicochemical properties and electrical performance of the obtained materials were also investigated, using thermogravimetric analysis (TGA) and X-ray diffraction (XRD) techniques. Thermogravimetric analysis shows that for the studied materials a decomposition stage between 3.7% and 4.1% can be observed, and mass increases from the LMN-Ag1 to the LMN-Ag3 sample. Also, in all those three situations an endothermic process with a maximum around 600 °C is observed. The diffractograms of the perovskite materials showed single-phase crystalline with high purity and rhombohedral structure with R-3c space group. The electrical measurements show that the conductivity spectrum is formed by both the static component σDC corresponding to the low frequencies and the component σAC corresponding to high frequencies. The values of σDC of samples are significantly influenced by the silver ions concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Peña MA, Fierro JLG. Chemical structures and performance of perovskite oxides. Chem Rev. 2001;101:1981–2017.

    Article  Google Scholar 

  2. Luxová J, Šulcová P, Trojan M. Study of perovskite compounds. J Therm Anal Calorim. 2008;93–3:823–7.

    Article  Google Scholar 

  3. Ghasdi M, Alamdari H. CO sensitive nanocrystalline LaCoO3 perovskite sensor prepared by high energy ball milling. Sens Actuators B Chem. 2010;148:478–85.

    Article  CAS  Google Scholar 

  4. Zhou Y, Zhou Z, Chen M, Zong Y, Huang J, Pang S, Padture NP. Doping and alloying for improved perovskite solar cells. J Mater Chem A. 2016;4:17623–35.

    Article  CAS  Google Scholar 

  5. Shanon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A. 1976;32:751–67.

    Article  Google Scholar 

  6. Enache S, Dragan M, Varlam M, Petrov K. Electronic percolation threshold of self-standing Ag-LaCoO3 porous electrodes for practical applications. Materials. 2019;12:2359–60.

    Article  CAS  Google Scholar 

  7. Campagnoli E, Tavares A, Fabbrini L, Rossetti I, Dubitsky YA, Zaopo A, Forni L. Effect of preparation method on activity and stability of LaMnO3 and LaCoO3 catalysts for the flameless combustion of methane. Appl Catal B Environ. 2005;55:133–9.

    Article  CAS  Google Scholar 

  8. Sui ZJ, Vradman L, Reizner I, Landau MV, Herskowitz M. Effect of preparation method and particle size on LaMnO3 performance in butane oxidation. Catal Commun. 2011;12:1437–41.

    Article  CAS  Google Scholar 

  9. Lu Y, Eyssler A, Otal EH, Matam SK, Brunko O, Weidenkaff A, Ferri D. Influence of the synthesis method on the structure of Pd-substituted perovskite catalysts for methane oxidation. Catal Today. 2013;208:42–7.

    Article  CAS  Google Scholar 

  10. Pu X, Dong G, Sun T, Li H, Chu K, Liu Y, Zhang S, Liu X. Structural, electrical and magnetic properties of La0.625Ca0.285Sr0.09MnO3 polycrystalline ceramics doped with Ag2O. J Mater Sci Mater Electron. 2019;30:19862–70.

    Article  CAS  Google Scholar 

  11. Skinner JS. Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes. Int J Inorg Mater. 2001;3:113–21.

    Article  CAS  Google Scholar 

  12. Zhao B, Yan B, Yao S, Xie Z, Wu Q, Ran R, Weng D, Zhang C, Chen JG. LaFe0.9Ni0.1O3 perovskite catalyst with enhanced activity and coke-resistance for dry reforming of ethane. J Catal. 2018;358:168–78.

    Article  CAS  Google Scholar 

  13. Ghasdi M, Alamdari H. Highly sensitive pure and Pd-doped LaFeO3 nanocrystalline perovskite based sensor prepared by high energy ball milling. Adv Mater Res. 2012;409:486–91.

    Article  CAS  Google Scholar 

  14. Tijare SN, Joshi MV, Padole PS, Mangrulkar PA, Rayalu SS, Labhsetwar NK. Photocatalytic hydrogen generation through water splitting on nano-crystalline LaFeO3 perovskite. Int J Hydrogen Energy. 2012;37:10451–6.

    Article  CAS  Google Scholar 

  15. Wang Y-Z, Zhong H, Li X-M, Jia F-F, Shi Y-X, Zhang W-G, Cheng Z-P, Zhang L-L, Wang J-K. Perovskite LaTiO3–Ag0.2 nanomaterials for nonenzymatic glucose sensor with high performance. Biosens Biolectron. 2013;48:56–60.

    Article  CAS  Google Scholar 

  16. Sfirloaga P, Poienar M, Malaescu I, Lungu A, Mihali CV, Vlazan P. Electrical conductivity of Ca-substituted lanthanum manganites. Ceram Int. 2018;44:5823–8.

    Article  CAS  Google Scholar 

  17. Mălăescu I, Lungu A, Marin CN, Vlăzan P, Sfirloagă P, Turi GM. Experimental investigations of the structural transformations induced by the heat treatment in manganese ferrite synthesized by ultrasonic assisted co-precipitation method. Ceram Int. 2016;42:16744–8.

    Article  Google Scholar 

  18. Ahmad EA, Liborio L, Kramer D, Mallia G, Kucernak AR, Harrison NM. Thermodynamic stability of LaMnO3 and its competing oxides: a hybrid density functional study of an alkaline fuel cell catalyst. Phys. Rev. B. 2011;84:085137.

    Article  Google Scholar 

  19. Rodriguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B: Condens. Matter 1993; https://doi.org/10.1016/0921-4526(93)90108-I.

    Article  Google Scholar 

  20. Markelova MN, Kotova OV, Kaul AR. Magnetic luminescent material based on silver doped lanthanum manganite and europium salts with 1,10-phenanthroline. Russ Chem Bull Int Ed. 2015;64:219–23.

    Article  CAS  Google Scholar 

  21. Ye SL, Song WH, Dai JM, Wang KY, Wang SG, Zhang CL, Du JJ, Sun YP, Fang J. Effect of Ag substitution on the transport property and magnetoresistance of LaMnO3. J Magn Magn Mater. 2002;248:26.

    Article  CAS  Google Scholar 

  22. Debye P. Polar molecules. New York: Chemical Catalog Co., Inc.; 1929. p. 172.

    Google Scholar 

  23. Mohanty S, Choudharyn RNP, Padhee R, Parida BN. Dielectric and impedance spectroscopy of BiFeO3–NaTaO3 multiferroics. Ceram Int. 2014;40:9017–25.

    Article  CAS  Google Scholar 

  24. Barsoukov E, Ross Macdonald J. Impedance spectroscopy theory, experiment, and applications. Hoboken: Wiley; 2005.

    Book  Google Scholar 

  25. Sivakumar N, Narayanasamy A, Shinoda K, Chinnasamy CN, Jeyadevan B, Greneche JM. Electrical and magnetic properties of chemically derived nanocrystalline cobalt ferrite. J Appl Phys. 2007;102:013916.

    Article  Google Scholar 

  26. Jonscher AK. Universal relaxation law. 1st ed. London: Chelsea Dielectrics Press; 1996.

    Google Scholar 

  27. Khadhraoui S, Triki A, Hcini S, Zemni S, Oumezzine M. Variable-range-hopping conduction and dielectric relaxation in Pr0.6Sr0.4Mn0.6Ti0.4O3±δ perovskite. J Magn Magn Mater. 2014;371:69–76.

    Article  CAS  Google Scholar 

  28. Mott NF, Davis EA. Electronic processes in noncrystalline materials. Oxford: Clarendon; 1979.

    Google Scholar 

Download references

Acknowledgements

This paper was financially supported by the National Nucleu Project PN 19220201, Ctr. 40N/2019. The authors thank to Maria Poienar (INCEMCT) for their help during the materials’ characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Sfirloaga.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sfirloaga, P., Vlase, G., Vlase, T. et al. Silver doping in lanthanum manganite materials: structural and electrical properties. J Therm Anal Calorim 142, 1817–1823 (2020). https://doi.org/10.1007/s10973-020-10095-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10095-1

Keywords

Navigation