Skip to main content
Log in

Thermal stability and oxygen resistance of polypropylene composites with fullerene/montmorillonite hybrid fillers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Silane coupling agent (KH-550) was used to connect fullerene (C60) with montmorillonite (MMT) to prepare C60-decorated MMT hybrid (C60-Si-MMT), and the mass ratio of C60 to MMT was about 1:5. PP/C60-Si-MMT composites with the C60-Si-MMT loading that 3.0% by mass were prepared via melt compounding. TG and DSC results showed that C60-Si-MMT could remarkably enhance the onset degradation temperature (Tonset) and the maximum decomposition temperature (Tmax) of PP to 287.9 °C and 394.7 °C, respectively. And the oxidative induced time of PP also greatly extended to 14.4 min. Rheological investigation results and thermogravimetric analysis coupled to Fourier transform infrared spectroscopy (TG-IR) showed that good dispersive states of C60-Si-MMT in matrix cause C60 trap free radicals and MMT restrict the segment movement of macromolecular chain more effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kashiwagi T, Du F, Douglas JF, Winey KI, Harris RH, Shields JR. Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat Mater. 2005;4:928–33.

    Article  CAS  Google Scholar 

  2. Cibulková Z, Vykydalová A, Chochulová A, Šimon P, Alexy P, Omaníková L. Thermooxidative stability of polypropylene/TiO2 and polypropylene/layered silicate nanocomposites. J Therm Anal Calorim. 2018;131:1491–7.

    Article  Google Scholar 

  3. Stoian SA, Gabor AR, Albu A, Nicolae CA, Raditoiu V, Panaitescu DM. Recycled polypropylene with improved thermal stability and melt processability. J Therm Anal Calorim. 2019;138:2469–80.

    Article  CAS  Google Scholar 

  4. Farhanian S, Hatami M. Thermal and morphological aspects of silver decorated halloysite reinforced polypropylene nanocomposites. J Therm Anal Calorim. 2017;130:2069–78.

    Article  CAS  Google Scholar 

  5. Liu H, Zhong Q, Kong Q, Zhang X, Li Y, Zhang J. Synergistic effect of organophilic Fe-montmorillonite on flammability in polypropylene/intumescent flame retardant system. J Therm Anal Calorim. 2014;117:693–9.

    Article  CAS  Google Scholar 

  6. Quan L, Zhang H, Xu L. The non-isothermal cyclization kinetics of amino-functionalized carbon nanotubes/polyacrylonitrile composites by in situ polymerization. J Therm Anal Calorim. 2015;119:1–9.

    Article  Google Scholar 

  7. Ren Y, Wei L, Li W, Yuan D, Yang Y, Cai X. Synthesis of silicic poly carbonyl urea and its flame-retardant effect on polypropylene for char forming. J Therm Anal Calorim. 2019;137:1267–77.

    Article  CAS  Google Scholar 

  8. Krusic PJ, Wasserman E, Keizer PN, Morton JR, Preston KF. Radical reactions of C60. Science. 1991;254:1183–5.

    Article  CAS  Google Scholar 

  9. Gan L, Huang S, Zhang X, Zhang A, Cheng B, Cheng H, Li X, Shang G. Fullerenes as a tert-butylperoxy radical trap, metal catalyzed reaction of tert-butyl hydroperoxide with fullerenes, and formation of the first fullerene mixed peroxides C60(O)(OOtBu)4 and C70(OOtBu)10. J Am Chem Soc. 2002;124:13384–5.

    Article  CAS  Google Scholar 

  10. Tang BZ, Leung SM, Peng H, Yu N, Su KC. Direct fullerenation of polycarbonate via simple polymer reactions. Macromolecules. 1997;30:2848–52.

    Article  CAS  Google Scholar 

  11. Cao T, Webber SE. Free radical copolymerization of styrene and C60. Macromolecules. 1996;29:3826–30.

    Article  CAS  Google Scholar 

  12. Alexander GB, Maxim VP, Pavel BK. Thermal analysis of carbon nanomaterials: advantages and problems of interpretation. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09647-2.

    Article  Google Scholar 

  13. Song PA, Zhu Y, Tong L, Fang Z. C60 reduces the flammability of polypropylene nanocomposites by in situ forming a gelled-ball network. Nanotechnology. 2008;19:225707.

    Article  Google Scholar 

  14. Wan D, Zhang Z, Wang Y, Xing H, Jiang Z, Tang T. Dependence of microstructures and melt behaviour of polypropylene/fullerene C60 nanocomposites on in situ interfacial reaction. Soft Matter. 2011;7:5290–9.

    Article  CAS  Google Scholar 

  15. Ran S, Zhao L, Han L, Guo Z, Fang Z. Improvement of the thermal and thermo-oxidative stability of high-density polyethylene by free radical trapping of rare earth compound. Thermochim Acta. 2015;612:55–62.

    Article  CAS  Google Scholar 

  16. Zhou X, Ran S, Hu H, Fang Z. Improving flame-retardant efficiency by incorporation of fullerene in styrene-butadiene-styrene block copolymer/aluminum hydroxide composites. J Therm Anal Calorim. 2016;125:199–204.

    Article  CAS  Google Scholar 

  17. Zhao L, Cao Z, Fang Z, Guo Z. Influence of fullerene on the kinetics of thermal and thermo-oxidative degradation of high-density polyethylene by capturing free radicals. J Therm Anal Calorim. 2013;114:1287–94.

    Article  CAS  Google Scholar 

  18. Yang DY, Liu QX, Xie XL, Zeng FD. Structure and thermal properties of exfoliated PVC/layered silicate nanocomposites via in situ polymerization. J Therm Anal Calorim. 2006;84:355–9.

    Article  CAS  Google Scholar 

  19. Wang Y, Zhang S, Wu X, Lu C, Cai Y, Ma L, Shi G, Yang L. Effect of montmorillonite on the flame-resistant and mechanical properties of intumescent flame-retardant poly(butylene succinate) composites. J Therm Anal Calorim. 2017;128:1417–27.

    Article  CAS  Google Scholar 

  20. Weng Z, Wang J, Senthil T, Wu L. Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing. Mater Design. 2016;102:276–83.

    Article  CAS  Google Scholar 

  21. Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O. One-pot synthesis of nylon 6-clay hybrid. J Polym Sci Part A: Polym Chem. 1993;31:1755–8.

    Article  CAS  Google Scholar 

  22. Kong Q, Wu T, Zhang H, Zhang Y, Zhang M, Si T, Yang L, Zhang J. Improving flame retardancy of IFR/PP composites through the synergistic effect of organic montmorillonite intercalation cobalt hydroxides modified by acidified chitosan. Appl Clay Sci. 2017;146:230–7.

    Article  CAS  Google Scholar 

  23. Liu D, Zhao W, Liu S, Cen Q, Xue Q. Comparative tribological and corrosion resistance properties of epoxy composite coatings reinforced with functionalized fullerene C60 and graphene. Surf Coat Tech. 2016;286:354–64.

    Article  CAS  Google Scholar 

  24. Cano M, Nunez-Lozano R, Dumont Y, Larpent C, de la Cueva-Mendez G. Synthesis and characterization of multifunctional superparamagnetic iron oxide nanoparticles (SPION)/C-60 nanocomposites assembled by fullerene-amine click chemistry. Rsc Adv. 2016;6:70374–82.

    Article  CAS  Google Scholar 

  25. Tsoufis T, Georgakilas V, Ke X, Van Tendeloo G, Rudolf P, Gournis D. Incorporation of Pure Fullerene into Organoclays: towards C60-pillared clay structures. Chem-Eur J. 2013;19:7937–43.

    Article  CAS  Google Scholar 

  26. Gournis D, Jankovic L, Maccallini E, Benne D, Rudolf P, Colomer J, Sooambar C, Georgakilas V, Prato M, Fanti M, Zerbetto F, Sarova GH, Guldi DM. Clay-fulleropyrrolidine nanocomposites. J Am Chem Soc. 2006;128:6154–63.

    Article  CAS  Google Scholar 

  27. Gournis D, Georgakilas V, Karakassides MA, Bakas T, Kordatos K, Prato M, Fanti M, Zerbetto F. Incorporation of fullerene derivatives into smectite clays: a new family of organic-inorganic nanocomposites. J Am Chem Soc. 2004;126:8561–8.

    Article  CAS  Google Scholar 

  28. Zhao L, Song P, Cao Z, Fang Z, Guo Z. Thermal stability and rheological behaviors of high-density polyethylene/fullerene nanocomposites. J Nanomater. 2012. https://doi.org/10.1155/2012/340962.

    Article  Google Scholar 

  29. Li L, Peng R, Jin B, Zhao F, Xu S, Fan L, Liu Q, Chu S. Preparation and study of fullerene ethylene diamine lead salt. Funct Mater. 2013;44:814–7.

    Google Scholar 

  30. Song P, Liu L, Huang G, Yu Y, Guo Q. Largely enhanced thermal and mechanical properties of polymer nanocomposites via incorporating C60@graphene nanocarbon hybrid. Nanotechnology. 2013;24:505706.

    Article  Google Scholar 

  31. Yin H, Chen H, Chen D. Hydrogen bond interaction in poly(acrylonitrile-co-methylacrylate)/attapulgite nanocomposites. Polym Eng Sci. 2010;50:312–9.

    Article  CAS  Google Scholar 

  32. Liu H, Shen Y, Du B, Fang Z, Wu Y. Fabrication of dendrimer-like fullerene (C60)-decorated oligomeric intumescent flame retardant for reducing the thermal oxidation and flammability of polypropylene nanocomposites. J Mater Chem. 2009;19:1305–13.

    Article  CAS  Google Scholar 

  33. Akiyama T, Ono Y, Miyamura H, Saito J, Kimura K, Higashida S, Oku T. Time-dependent non-linear size change of C60-ethylenediamine adduct particles in formation process. J Nanopart Res. 2018;20:252.

    Article  Google Scholar 

  34. Fang L, Wang L, Zhou T, Liu L, Zhou J, Li M. Preparation and characterization of Fe, Co, Si-pillared montmorillonites with aminosilanes as silicon pillars precursor. Appl Clay Sci. 2017;141:88–94.

    Article  CAS  Google Scholar 

  35. Yang N, Zhang Z, Ma N, Liu H, Zhan X, Li B, Gao W, Tsai F, Jiang T, Chang C. Effect of surface modified kaolin on properties of polypropylene grafted maleic anhydride. Results Phys. 2017;7:969–74.

    Article  Google Scholar 

  36. Asgari M, Sundararaj U. Silane functionalization of sodium montmorillonite nanoclay: the effect of dispersing media on intercalation and chemical grafting. Appl Clay Sci. 2018;153:228–38.

    Article  CAS  Google Scholar 

  37. Qian X, Liao M, Zhang W. Surface modification of montmorillonite and application to the preparation of polybutadiene/montmorillonite nanocomposites. Polym Int. 2007;56:399–408.

    Article  CAS  Google Scholar 

  38. Wang R, Li Z, Wang Y, Liu W, Deng L, Jiao W, Yang F. Effects of modified attapulgite on the properties of attapulgite/epoxy nanocomposites. Polym Compos. 2013;34:22–31.

    Article  Google Scholar 

  39. Zabihi O, Khayyam H, Fox B, Naebe M. Enhanced thermal stability and lifetime of epoxy nanocomposites using covalently functionalized clay: experimental and modelling. New J Chem. 2015;39:2269–78.

    Article  CAS  Google Scholar 

  40. Yazdani H, Morshedian J, Khonakdar HA. Effects of silane coupling agent and maleic anhydride-grafted polypropylene on the morphology and viscoelastic properties of polypropylene–mica composites. Polym Compos. 2006;27:491–6.

    Article  CAS  Google Scholar 

  41. Fitaroni LB, de Lima JA, Cruz SA, Waldman WR. Thermal stability of polypropylene–montmorillonite clay nanocomposites: limitation of the thermogravimetric analysis. Polym Degrad Stabil. 2015;111:102–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51991355 and 51673173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenghong Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Sai, T., Fang, Z. et al. Thermal stability and oxygen resistance of polypropylene composites with fullerene/montmorillonite hybrid fillers. J Therm Anal Calorim 146, 1383–1392 (2021). https://doi.org/10.1007/s10973-020-10089-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10089-z

Keywords

Navigation