Skip to main content
Log in

Numerical investigation of laminar flow of biological nanofluid in a rifled tube using two-phase mixture model: first-law and second-law analyses and geometry optimization

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The impetus of this numerical investigation is to explore the performance aspects of laminar forced convection flow of biologically synthesized water–silver nanofluid inside an internally spiral-ribbed heat exchanger tube from both the first and second laws of thermodynamics perspectives. The two-phase mixture model is used to perform the required simulations. The impacts of the volume concentration of nanoadditives (φ), Reynolds number (Re) as well as the width (W), height (H) and pitch (P) of the ribs on the hydrothermal aspects and irreversibility behavior of the nanofluid are assessed, and the results are compared with the findings of smooth tube. It was found that the use of nanofluid and the use of rifled tube instead of water and smooth tube, respectively, are suitable ways to improve system performance from both the first and second laws of thermodynamics perspectives. Moreover, it was reported that the best hydrothermal performance of the nanofluid through the rifled tube occurs at φ = 1%, Re = 2000, W = 3 mm, H = 1 mm, P = 4 mm, while the minimum total irreversibility in the flow of water–silver nanofluid inside a rifled tube occurs at φ = 1%, Re = 2000, W = 3 mm, H = 0.5 mm, P = 4 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

Be:

Bejan number (–)

c p :

Specific heat capacity (J kg−1 K−1)

d p :

Nanoparticle diameter (m)

D h :

Hydraulic diameter of tube (m)

f :

Friction factor (–)

f drag :

Drag coefficient (–)

FOM:

Figure of merit (–)

g :

Gravitational acceleration (m s−2)

H :

Height of ribs (m)

h :

Convective heat transfer coefficient (W m−2K−1)

k :

Thermal conductivity (W m−1 K−1)

L :

Length of tube (m)

P :

Pitch of ribs (m)

p :

Pressure (Pa)

PEC:

Performance evaluation criterion (–)

q″ :

Heat flux (W/m−2)

Re:

Reynolds number (–)

\({\dot{S}}_{\text{g,f}}^{{{\prime \prime \prime }}}\) :

Local fluid friction irreversibility rate (W m−3 K−1)

\({\dot{S}}_{\text{g,h}}^{{{\prime \prime \prime }}}\) :

Local heat transfer irreversibility rate (W m−3 K−1)

\({\dot{S}}_{\text{g,t}}^{{{\prime \prime \prime }}}\) :

Local total irreversibility rate (W m−3 K−1)

\({\dot{S}}_{\text{g,f}}\) :

Global fluid friction irreversibility rate (W K−1)

\({\dot{S}}_{\text{g,h}}\) :

Global heat transfer irreversibility rate (W K−1)

\({\dot{S}}_{\text{g,t}}\) :

Global total irreversibility rate (W K−1)

T :

Temperature (K)

V :

Velocity (m s−1)

V dr :

Drift velocity (m s−1)

W :

Width of ribs (m)

φ :

Volume concentration of nanofluid (%)

μ :

Viscosity (Pa s−1)

ρ :

Density (kg m−3)

bf:

Base fluid

nf:

Nanofluid

p:

Particle

r:

Rifled tube

s:

Smooth tube

w:

Solid wall

References

  1. Altun AH, Ziylan O. Experimental investigation of the effects of horizontally oriented vertical sinusoidal wavy fins on heat transfer performance in case of natural convection. Int J Heat Mass Transf. 2019;139:425–31.

    Article  Google Scholar 

  2. Ali H, Kamran MS, Ali HM, Imran S. Condensation heat transfer enhancement using steam-ethanol mixtures on horizontal finned tube. Int J Therm Sci. 2019;140:87–95.

    Article  CAS  Google Scholar 

  3. Buffone C. A novel approach for heat transfer enhancement in composite fins. Int J Heat Mass Transf. 2019;130:650–9.

    Article  Google Scholar 

  4. Zonouzi SA, Aminfar H, Mohammadpourfard M. A review on effects of magnetic fields and electric fields on boiling heat transfer and CHF. Appl Therm Eng. 2019;151:11–25.

    Article  CAS  Google Scholar 

  5. Bao SR, Zhang RP, Rong Y, Zhi XQ, Qiu LM. Interferometric study of the heat and mass transfer during the mixing and evaporation of liquid oxygen and nitrogen under non-uniform magnetic field. Int J Heat Mass Transf. 2019;136:10–9.

    Article  CAS  Google Scholar 

  6. Wang ZH, Zhou ZK. External natural convection heat transfer of liquid metal under the influence of the magnetic field. Int J Heat Mass Transf. 2019;134:175–84.

    Article  CAS  Google Scholar 

  7. Sheikholeslami M, Jafaryar M, Ali JA, Hamad SM, Divsalar A, Shafee A, Nguyen-Thoi T, Li Z. Simulation of turbulent flow of nanofluid due to existence of new effective turbulator involving entropy generation. J Mol Liq. 2019;291:111283.

    Article  CAS  Google Scholar 

  8. Ibrahim MM, Essa MA, Mostafa NH. A computational study of heat transfer analysis for a circular tube with conical ring turbulators. Int J Therm Sci. 2019;137:138–60.

    Article  Google Scholar 

  9. Khorasani S, Jafarmadar S, Pourhedayat S, Abdollahi MAA, Heydarpour A. Experimental investigations on the effect of geometrical properties of helical wire turbulators on thermal performance of a helically coiled tube. Appl Therm Eng. 2019;147:983–90.

    Article  Google Scholar 

  10. Peeters JWR, Sandham ND. Turbulent heat transfer in channels with irregular roughness. Int J Therm Sci. 2019;138:454–67.

    Google Scholar 

  11. Tummers MJ, Steunebrink M. Effect of surface roughness on heat transfer in Rayleigh–Bénard convection. Int J Heat Mass Transf. 2019;139:1056–64.

    Article  Google Scholar 

  12. Wang P, Zou B, Ding S. Modeling of surface roughness based on heat transfer considering diffusion among deposition filaments for FDM 3D printing heat-resistant resin. Appl Therm Eng. 2019;161:114064.

    Article  CAS  Google Scholar 

  13. Taklifi A, Akhavan-Behabadi MA, Hanafizadeh P, Aliabadi A. Effect of heat and mass flux on heat transfer characteristics of water forced convection inside vertical and inclined rifled tubes. Appl Therm Eng. 2019;117:169–77.

    Article  Google Scholar 

  14. Xu W, Wang S, Liu G, Zhang Q, Hassan M, Lu H. Experimental and numerical investigation on heat transfer of Therminol heat transfer fluid in an internally four-head ribbed tube. Int J Therm Sci. 2017;116:32–44.

    Article  CAS  Google Scholar 

  15. Xu W, Wang W, Du X, Zhu X. Numerical investigation on the secondary flow of supercritical water in a four-head internally ribbed tube. Appl Therm Eng. 2017;120:708–18.

    Article  Google Scholar 

  16. Zhang W, Li H, Zhang Q, Lei X, Zhang Q. Experimental investigation on heat transfer deterioration of supercritical pressure water in vertically-upward internally-ribbed tubes. Int J Heat Mass Transf. 2018;120:930–43.

    Article  Google Scholar 

  17. Mirkhani N, Taklifi A, Hanafizadeh P, Aliabadi A. Numerical study on the hydraulic and thermal performance of internally ribbed tubes in supercritical pressure and sub-critical two-phase flows. J Supercrit Fluids. 2018;136:21–8.

    Article  CAS  Google Scholar 

  18. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. ASME FED. 1995;231:99–105.

    CAS  Google Scholar 

  19. Shahsavar A, Salimpour MR, Saghafian M, Shafii MB. Effect of temperature and concentration on thermal conductivity and viscosity of ferrofluid loaded with carbon nanotubes. Heat Mass Transf. 2016;52:2293–301.

    Article  CAS  Google Scholar 

  20. Talebizadehsardari P, Shahsavar A, Toghraie D, Barnoon P. An experimental investigation for study the rheological behavior of water–carbon nanotube/magnetite nanofluid subjected to a magnetic field. Phys A. 2019;534:122129.

    Article  CAS  Google Scholar 

  21. Shahsavar A, Bagherzadeh SA, Mahmoudi B, Hajizadeh A, Afrand M, Nguyen TK. Robust weighted least squares support vector regression algorithm to estimate the nanofluid thermal properties of water/graphene oxide-silicon carbide mixture. Phys A. 2019;525:1418–28.

    Article  CAS  Google Scholar 

  22. Alsarraf J, Bagherzadeh SA, Shahsavar A, Rostamzadeh M, Trinh PV, Tran MD. Rheological properties of SWCNT/EG mixture by a new developed optimization approach of LS-support vector regression according to empirical data. Phys A. 2019;525:912–20.

    Article  CAS  Google Scholar 

  23. Shahsavar A, Khanmohammadi S, Toghraie D, Salihepour H. Experimental investigation and develop ANNs by introducing the suitable architectures and training algorithms supported by sensitivity analysis: measure thermal conductivity and viscosity for liquid paraffin based nanofluid containing Al2O3 nanoparticles. J Mol Liq. 2019;276:850–60.

    Article  CAS  Google Scholar 

  24. Shahsavar A, Khanmohammadi S, Karimipour A, Goodarzi M. A novel comprehensive experimental study concerned synthesizes and prepare liquid paraffin-Fe3O4 mixture to develop models for both thermal conductivity and viscosity: a new approach of GMDH type of neural network. Int J Heat Mass Transf. 2019;131:432–41.

    Article  CAS  Google Scholar 

  25. Shahsavar A, Salimpour MR, Saghafian M, Shafii MB. Effect of magnetic field on thermal conductivity and viscosity of a magnetic nanofluid loaded with carbon nanotubes. J Mech Sci Technol. 2016;30:809–15.

    Article  Google Scholar 

  26. Alsarraf J, Rahmani R, Shahsavar A, Afrand M, Wongwises S. Effect of magnetic field on laminar forced convective heat transfer of MWCNT–Fe3O4/water hybrid nanofluid in a heated tube. J Therm Anal Calorim. 2019;137:1809–25.

    Article  CAS  Google Scholar 

  27. Monfared M, Shahsavar A, Bahrebar MR. Second law analysis of turbulent convection flow of boehmite alumina nanofluid inside a double-pipe heat exchanger considering various shapes for nanoparticle. J Therm Anal Calorim. 2019;135:1521–32.

    Article  CAS  Google Scholar 

  28. Shahsavar A, Bahiraei M, Ansarian R. Effect of line dipole magnetic field on entropy generation of Mn–Zn ferrite ferrofluid flowing through a minichannel using two-phase mixture model. Powder Technol. 2018;340:370–9.

    Article  CAS  Google Scholar 

  29. Shahsavar A, Godini A, Talebizadeh Sardari P, Toghraie D, Salehipour H. Impact of variable fluid properties on forced convection of Fe3O4/CNT/water hybrid nanofluid in a double-pipe mini-channel heat exchanger. J Therm Anal Calorim. 2019;137:1031–43.

    Article  CAS  Google Scholar 

  30. Shahsavar A, Moradi M, Bahiraei M. Heat transfer and entropy generation optimization or flow of a non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles in a concentric annulus”. J Taiwan Inst Chem Eng. 2018;84:149–61.

    Article  CAS  Google Scholar 

  31. Shahsavar A, Rahimi Z, Salehipour H. Nanoparticle shape effects on thermal-hydraulic performance of boehmite alumina nanofluid in a horizontal double-pipe minichannel heat exchanger. Heat Mass Transf. 2019;55:1741–51.

    Article  CAS  Google Scholar 

  32. Karimi A, Al-Rashed AAAA, Afrand M, Mahian O, Wongwises S, Shahsavar A. The effects of tape insert material on the flow and heat transfer in a nanofluid-based double tube heat exchanger: two-phase mixture model. Int J Mech Sci. 2019;156:397–409.

    Article  Google Scholar 

  33. Liu WI, Alsarraf J, Shahsavar A, Rostamzadeh M, Afrand M, Nguyen TK. Impact of oscillating magnetic field on the thermal-conductivity of water–Fe3O4 and water–Fe3O4/CNT ferro-fluids: experimental study. J Magn Magn Mater. 2019;484:258–65.

    Article  CAS  Google Scholar 

  34. Tong Y, Lee H, Kang W, Cho H. Energy and exergy comparison of a flat-plate solar collector using water, Al2O3 nanofluid, and CuO nanofluid. Appl Therm Eng. 2019;159:113959.

    Article  CAS  Google Scholar 

  35. Jin X, Lin G, Zeiny A, Jin H, Bai L, Wen D. Solar photothermal conversion characteristics of hybrid nanofluids: an experimental and numerical study. Renew Energy. 2019;141:937–49.

    Article  CAS  Google Scholar 

  36. Rashidi S, Bovand M, Abolfazli Esfahani J. Structural optimization of nanofluid flow around an equilateral triangular obstacle. Energy. 2015;88:385–98.

    Article  CAS  Google Scholar 

  37. Parizad Laein R, Rashidi S, Abolfazli Esfahani J. Experimental investigation of nanofluid free convection over the vertical and horizontal flat plates with uniform heat flux by PIV. Adv Powder Technol. 2016;27:312–22.

    Article  CAS  Google Scholar 

  38. Rashidi S, Bovand M, AbolfazliEsfahani J. Opposition of Magnetohydrodynamic and AL2O3–water nanofluid flow around a vertex facing triangular obstacle. J Mol Liq. 2016;215:276–84.

    Article  CAS  Google Scholar 

  39. Shirejini SZ, Rashidi S, Abolfazli Esfahani J. Recovery of drop in heat transfer rate for a rotating system by nanofluids. J Mol Liq. 2016;220:961–9.

    Article  CAS  Google Scholar 

  40. Bovand M, Rashidi S, Ahmadi G, Abolfazli Esfahani J. Effects of trap and reflect particle boundary conditions on particle transport and convective heat transfer for duct flow—a two-way coupling of Eulerian–Lagrangian model. Appl Therm Eng. 2016;108:368–77.

    Article  CAS  Google Scholar 

  41. Maskaniyan M, Rashidi S, AbolfazliEsfahani J. A two-way couple of Eulerian–Lagrangian model for particle transport with different sizes in an obstructed channel. Powder Technol. 2017;312:260–9.

    Article  CAS  Google Scholar 

  42. Rashidi S, Akbarzadeh M, Karimi N, Masoodi R. Combined effects of nanofluid and transverse twisted-baffles on the flow structures, heat transfer and irreversibilities inside a square duct—a numerical study. Appl Therm Eng. 2018;130:135–48.

    Article  CAS  Google Scholar 

  43. Rashidi S, Hormozi F, Sunden B, Mahian O. Energy saving in thermal energy systems using dimpled surface technology—a review on mechanisms and applications. Appl Energy. 2019;250:1491–547.

    Article  Google Scholar 

  44. Abbas N, Awan MB, Amer M, Ammar SM, Sajjad U, Ali HM, Zahra N, Hussain M, Badshah MA, Jafry AT. Applications of nanofluids in photovoltaic thermal systems: a review of recent advances. Phys A. 2019;536:122513.

    Article  CAS  Google Scholar 

  45. Yang L, Ji W, Mao M, Huang JN. An updated review on the properties, fabrication and application of hybrid-nanofluids along with their environmental effects. J Clean Prod. 2020;257:120408.

    Article  CAS  Google Scholar 

  46. Chen W, Zou C, Li X. Application of large-scale prepared MWCNTs nanofluids in solar energy system as volumetric solar absorber. Sol Energy Mater Sol Cells. 2019;200:109931.

    Article  CAS  Google Scholar 

  47. Al Kumaint AAR, Ibrahim TK, Abdullah MA. Experimental and numerical study of forced convection heat transfer in different internally ribbed tubes configuration using TiO2 nanofluid. Asian Res. 2019;48:1778–804.

    Google Scholar 

  48. Bejan A. Second law analysis in heat transfer. Energy. 1980;5:720–32.

    Article  Google Scholar 

  49. Al-Rashed AAAA, Shahsavar A, Entezari S, Moghimi MA, Adio SA, Nguyen TK. Numerical investigation of non-Newtonian water–CMC/CuO nanofluid flow in an offset strip-fin microchannel heat sink: thermal performance and thermodynamic considerations. Appl Therm Eng. 2019;155:247–58.

    Article  CAS  Google Scholar 

  50. Al-Rashed AAAA, Shahsavar A, Rasooli O, Moghimi MA, Karimipour A, Tran MD. Numerical assessment into the hydrothermal and entropy generation characteristics of biological water–silver nano-fluid in a wavy walled microchannel heat sink. Int Commun Heat Mass Transf. 2019;104:118–26.

    Article  CAS  Google Scholar 

  51. Shahsavar A, Talebizadeh P, Toghraie D. Free convection heat transfer and entropy generation analysis of water–Fe3O4/CNT hybrid nanofluid in a concentric annulus. Int J Numer Methods Heat Fluid Flow. 2019;29:915–34.

    Article  Google Scholar 

  52. Hande R, Wilhelmsen Q. Minimum entropy generation in a heat exchanger in the cryogenic part of the hydrogen liquefaction process: on the validity of equipartition and disappearance of the highway. Int J Hydrogen Energy. 2019;44:15045–55.

    Article  CAS  Google Scholar 

  53. Jing Q, Xie Y, Zhang D. Thermal-hydraulic performance and entropy generation of supercritical carbon dioxide in heat exchanger channels with teardrop dimple/protrusion. Int J Heat Mass Transf. 2019;135:1082–96.

    Article  CAS  Google Scholar 

  54. Ebrahimi-Moghadam A, Moghadam AJ. Optimal design of geometrical parameters and flow characteristics for Al2O3/water nanofluid inside corrugated heat exchangers by using entropy generation minimization and genetic algorithm methods. Appl Therm Eng. 2019;149:889–98.

    Article  CAS  Google Scholar 

  55. Al-Rashed AAA, Ranjbarzadeh R, Aghakhani S, Soltanimehr M, Afrand M, Nguyen TK. Entropy generation of boehmite alumina nanofluid flow through a minichannel heat exchanger considering nanoparticle shape effect. Phys A. 2019;521:724–36.

    Article  CAS  Google Scholar 

  56. Sarafraz MM, Hormozi F. Intensification of forced convection heat transfer using biological nano-fluid in a double-pipe heat exchanger. Exp Therm Fluid Sci. 2015;66:279–89.

    Article  CAS  Google Scholar 

  57. Sun Q, Cai X, Li J, Zheng M, Chen Z, Yu CP. Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids Surf A Physicochem Eng Aspects. 2014;444:226–31.

    Article  CAS  Google Scholar 

  58. M. Manninen, V. Taivassalo, S. Kallio, On the mixture model for multiphase flow. Technical Research Centre of Finland; 1996.

  59. Schiller L, Neumann A. A drag coefficient correlation. Vdi Zeitung. 1935;77:51.

    Google Scholar 

  60. Shahsavar A, Salimpour MR, Saghafian M, Shafii MB. An experimental study on the effect of ultrasonication on thermal conductivity of ferrofluid loaded with carbon nanotubes. Thermochim Acta. 2015;617:102–10.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amin Shahsavar or Sara Rostami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahsavar, A., Jafari, M. & Rostami, S. Numerical investigation of laminar flow of biological nanofluid in a rifled tube using two-phase mixture model: first-law and second-law analyses and geometry optimization. J Therm Anal Calorim 146, 955–966 (2021). https://doi.org/10.1007/s10973-020-10065-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10065-7

Keywords

Navigation