Skip to main content
Log in

Prediction of the release process of the nitrogen-extinguishant binary mixture considering surface tension

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nitrogen used for pressurization in the extinguisher can be partially dissolved in the fire extinguishing agent. Consequently, the evolution of the dissolved nitrogen has a significant effect on the release behavior of the fire extinguishing agent in a rapid process. In this article, a new model was developed to predict the critical pressure of the nitrogen evolution and the release process of the fire extinguishing agent was described in detail. According to the Peng–Robinson equation of state and van der Waals mixing rule, the effect of the dissolved nitrogen on the surface tension of the fire extinguishant was analyzed by considering surface phase and fugacity coefficient. A method to calculate the surface tension of the liquid agent dissolved with nitrogen was proposed. The results showed that the proposed model can determine the accurate critical pressure of the evolution of the dissolved nitrogen and further evaluated whether nitrogen escapes. At different initial filling pressures, in addition, the release process of the nitrogen extinguishant such as CF3I, FC218 (C3F8), HFC125 (C2HF5) and Halon1301 (CF3Br) was well predicted by the fluid release model when taking the surface tension and adiabatic index of the mixture into account. Compared with the previously obtained experimental data, the predictions obtained indicated that the present model can adequately describe the liquid and the gas mixture release stage in the release process of the nitrogen extinguishant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

a :

Cohesive energy parameter in the PR equation of state (Pa m6 mol−2)

A :

Surface area (m2); constant defined in Eq. (9)

b :

Volumetric parameter in the PR equation of state (m3 mol−1)

B :

Constant defined in Eq. (9)

f :

Fugacity (Pa)

J :

Nucleation rate (nuclei cm−3 s−1)

k :

Binary interaction parameter

M :

Molecular mass (g)

N A :

Avogadro constant (6.02 × 1023 mol−1)

p :

Pressure (Pa)

p e :

Bubble-point pressure (Pa)

R :

Molar gas constant (8.3145 J mol−1 K−1)

T :

Absolute temperature (K)

T i :

Initial temperature (K)

v :

Molar volume (m3 mol−1)

x, X :

Mole fraction

y, Y :

Mole fraction

Z :

Compressibility factor

V :

Volume (m3)

α :

Function of temperature in the PR equation of state

α ij :

Binary parameter

κ :

Function of the acentric factor

φ :

Fugacity coefficient

ω :

Acentric factor

G :

Gas

L :

Liquid

1:

Nitrogen

2:

Agent

B:

Bulk phase

c:

Critical point

i, j:

Component identification

m:

Mixture

r:

Reduced parameter

S:

Surface phase

b:

Bottle

References

  1. Takahashi F, Katta VR, Linteris GT, Babushok VI. A computational study of extinguishment and enhancement of propane cup-burner flames by halon and alternative agents. Fire Saf J. 2017;91:688–94.

    Article  CAS  Google Scholar 

  2. Zhang T, Liu H, Han Z, Wang Y, Guo Z, Wang C. Experimental study on the synergistic effect of fire extinguishing by water and potassium salts. J Therm Anal Calorim. 2019;138:857–67.

    Article  Google Scholar 

  3. Gann RG. Guidance for advanced fire suppression in aircraft. Fire Technol. 2008;44(3):263–82.

    Article  Google Scholar 

  4. Hodgs SE, McCormick SJ. Fire extinguishing agents for protection of occupied spaces in military ground vehicles. Fire Technol. 2013;49(2):379–94.

    Article  Google Scholar 

  5. Grosshandler WL, Gann RG, Pitts WM. Evaluation of alternative in-flight fire suppressants for full-scale testing in simulated aircraft engine nacelles and dry bays. NIST SP-861, Washington DC; 1994.

  6. Saso Y, Saito N, Liao C, Ogawa Y. Extinction of counterfiow diffusion flames with halon replacements. Fire Saf J. 1996;26(4):303–26.

    Article  CAS  Google Scholar 

  7. Elliott DG, Garrison PW, Klein GA, Moran KM, Zydowicz MP. Flow of nitrogen pressurized halon 1301 in fire extinguishing Systems. JPL Publication 84-62, Jet Propulsion Laboratory; 1984.

  8. Yang JC, Cleary TG, Vázquez I, Boyer CI, King MD, Breuel BD, Gmurczyk G. Optimization of system discharge. In: Fire suppression system performance of alternative agents in aircraft engine and dry bay laboratory simulations, NIST SP-890, Washington DC, 1995. pp 407–782.

  9. Yang JC, Cleary TG, Huber ML, Grosshandler WL. Vapour nucleation in a cryogenic—fluid-dissolved-nitrogen mixture during rapid depressurization. The Royal Society. 1999;455:1717–38.

    Article  CAS  Google Scholar 

  10. Blander M, Katz JL. Bubble nucleation in liquids. AIChE J. 1975;21(5):833–48.

    Article  CAS  Google Scholar 

  11. Forest TW, Ward CA. Homogeneous nucleation of bubbles in solutions at pressures above the vapor pressure of the pure liquid. J Chem Phys. 1978;69(5):2221–30.

    Article  CAS  Google Scholar 

  12. Schmelzer WP, Baidakov G, Boltachev S. Kinetics of boiling in binary liquid-gas solutions: comparison of different approaches. J Chem Phys. 2003;119(12):6166–83.

    Article  CAS  Google Scholar 

  13. Němec T. Homogeneous bubble nucleation in binary systems of liquid solvent and dissolved gas. Chem Phys. 2016;467:26–37.

    Article  Google Scholar 

  14. Jiang W, Bian J, Liu Y, Gao S, Chen M, Du S. Modification of the CO2 surface tension calculation model under low-temperature and high-pressure condition. J Dispersion Sci Technol. 2017;38(5):671–6.

    Article  CAS  Google Scholar 

  15. Duan Y, Zhang C, Lin H, Zhu M. The prediction of surface tension for HFCs and HCFCs. J Eng Thermophys. 2001;22(3):278–80 (in Chinese).

    CAS  Google Scholar 

  16. Nicola GD, Moglie M. A generalized equation for the surface tension of refrigerants. Int J Refrig. 2011;34(4):1098–108.

    Article  Google Scholar 

  17. Nicola GD, Nicola CD, Moglie M. A new surface tension equation for refrigerants. Int J Thermophys. 2013;34(12):2243–60.

    Article  Google Scholar 

  18. Zhu J, Duan Y, Yang Z, Lin H. Factors influencing the surface tension of binary hydrocarbon mixtures. Fuel. 2014;116(1):116–22.

    Article  CAS  Google Scholar 

  19. Duan W, Zhao X, Zeng X, Liu Y. Surface tension of HFC-161 and compressor oil mixtures. Int J Refrig. 2018;85:191–9.

    Article  CAS  Google Scholar 

  20. Carey BS, Scriven LE, Davis HT. Semiempirical theory of surface tensions of pure normal alkanes and alcohols. AIChE J. 1978;24(6):1076–80.

    Article  CAS  Google Scholar 

  21. Liang X, Michelsen ML, Kontogeorgis GM. A density gradient theory based method for surface tension calculations. Fluid Phase Equilib. 2016;428:153–63.

    Article  CAS  Google Scholar 

  22. Mu X, Frank F, Alpak FO, Chapman WG. Stabilized density gradient theory algorithm for modeling interfacial properties of pure and mixed systems. Fluid Phase Equilib. 2017;435:118–30.

    Article  CAS  Google Scholar 

  23. Wang P. Application of green surfactants developing environment friendly foam extinguishing agent. Fire Technol. 2015;51(3):503–11.

    Article  Google Scholar 

  24. Baidakov VG, Khotienkova MN, Andbaeva VN, Kaverin AM. Capillary constant and surface tension of methane-nitrogen solutions: 1. Experiment. Fluid Phase Equilib. 2011;301(1):67–72.

    Article  CAS  Google Scholar 

  25. Baidakov VG, Kaverin AM, Khotienkova MN, Andbaeva VN. Surface tension of an ethane-nitrogen solution. 1: experiment and thermodynamic analysis of the results. Fluid Phase Equilib. 2012;328(35):13–20.

    Article  CAS  Google Scholar 

  26. Baidakov VG, Kaverin AM, Khotienkova MN. Surface tension of ethane-methane solutions: 1. Experiment and thermodynamic analysis of the results. Fluid Phase Equilib. 2013;356(10):90–5.

    Article  CAS  Google Scholar 

  27. Dinenno PJ, Hanauska CP, Forssell EW. Design and engineering aspects of halon replacements. Process Saf Prog. 1995;14(1):57–62.

    Article  CAS  Google Scholar 

  28. Yang JC, Pitts WM, Breuel BD, Grosshandler WL, Cleveland WG. Rapid discharge of a fire suppressing agent. Int Commun Heat Mass Transf. 1996;23(23):835–44.

    Article  CAS  Google Scholar 

  29. Lemmon EW, Jacobsen RT. A generalized model for the thermodynamic properties of mixtures. Int J Thermophys. 1999;20(3):825–35.

    Article  CAS  Google Scholar 

  30. Lemmon EW, Jacobsen RT. Thermodynamic properties of mixtures of R-32, R-125, R-134a, and R-152a. Int J Thermophys. 1999;20(6):1629–38.

    Article  CAS  Google Scholar 

  31. He MG, Yang YJ, Zhang Y, Zhang XX. Theoretical estimation of the isobaric heat capacity cp of refrigerant. Appl Therm Eng. 2008;28(14):1813–25.

    Article  CAS  Google Scholar 

  32. Hu YQ, Li ZB, Lu JF, Li YG, Jin Y. Surface tension calculation of liquid mixtures by PR EOS. Chem Eng. 1997;25(3):42–5 (in Chinese).

    CAS  Google Scholar 

  33. Peng DY, Robinson DB. A new two-constant equation of state. Ind Eng Chem Fundam. 1976;15(1):92–4.

    Article  Google Scholar 

  34. Chen M, Xie Y, Wu H, Shi S, Yu J. Modeling solubility of nitrogen in clean fire extinguishing agent by Peng–Robinson equation of state and a correlation of Henry’s law constants. Appl Therm Eng. 2016;110:457–68.

    Article  Google Scholar 

  35. Holden BS, Katz JL. The homogeneous nucleation of bubbles in superheated binary liquid mixtures. AIChE J. 1978;24(2):260–7.

    Article  CAS  Google Scholar 

  36. Lepori L, Gianni P, Matteoli E. Thermodynamic study of tetrachloromethane or heptane + cycloalkane mixtures. J Therm Anal Calorim. 2016;124:1497–509.

    Article  CAS  Google Scholar 

  37. Matteoli E, Lepori L, Porcedda S. Thermodynamic study of mixtures containing dibromomethane. J Therm Anal Calorim. 2018;132:611–21.

    Article  CAS  Google Scholar 

  38. Chen M, Xie Y, Guo X, Yu J, Ma W. Predicting filling mass of nitrogen in fire agent bottle based on Peng–Robinson equation of state with Wong-Sandler mixing rule. J Beijing Univ Aeron Astron. 2016;42(10):2162–7 (in Chinese).

    Google Scholar 

  39. Simoiu L, Trandafir I, Popescu G. New thermodynamic consistency test for isobaric vapour–liquid equilibrium data. J Therm Anal Calorim. 1998;52:1023–35.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from University of Hertfordshire, UK. This work was supported by China Helicopter Design and Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongqi Xie or Jianqin Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Xie, Y., Chen, M. et al. Prediction of the release process of the nitrogen-extinguishant binary mixture considering surface tension. J Therm Anal Calorim 145, 185–199 (2021). https://doi.org/10.1007/s10973-020-10040-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10040-2

Keywords

Navigation