Skip to main content
Log in

Effect of coated mesh wick on the performance of cylindrical heat pipe using graphite nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal performance evaluation of TiO2-coated copper mesh wick in a cylindrical heat pipe with graphite nanofluid is experimentally analyzed at various inclinations, nanoparticle concentrations and power levels. Boiling heat transfer from the evaporator of a heat pipe depends on both thermal conductivity of the nanoparticle and suspension stability of the nanofluid. The lower the density of the nanoparticle, the better the suspension stability. Spherical graphite nanoparticles having lower density and good thermal conductivity quicken the heat transfer rate and hence the vaporization of base fluid. A hydrophilic coating of TiO2 is done on the copper wick structure to reduce the contact angle of graphite nanofluid. Results showed that the heat pipe worked well at 60° inclination compared to the other tested orientations. For this optimum condition, a reduction in 168.75% of thermal resistance is obtained compared with DI water with uncoated wick at horizontal position and also an improvement in thermal efficiency of 94.07% for 1.0 mass% particle loading. The enhancement in equivalent thermal conductivity is 90.87% for 1.0 mass% compared with DI water. Results from the repeatability test also confirm that the hydrophilic coating over the wick is stable, and results are repeatable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

A :

Area (m2)

C p :

Specific heat (J kg−1 K−1)

d :

Outer diameter (mm)

I :

Current (A)

k :

Thermal conductivity (W m−1 K−1)

L :

Length (mm)

\(\dot{m}\) :

Mass flow rate (kg s−1)

Q :

Input power (Heat supplied) (W)

q :

Heat flux (W m−2)

R :

Thermal resistance (K W−1)

T :

Temperature (K)

ΔT :

Temperature difference (K)

V :

Voltage (V)

Mass.:

Mass fraction (%)

CW:

Coated wick

UCW:

Uncoated wick

av:

Average

bf:

Base fluid

c:

Condenser

cs:

Cross-section

cv:

Condenser vapor

cw:

Condenser wall

ec:

Evaporator−condenser

Eq.:

Equivalent

ev:

Evaporator vapor

ew:

Evaporator wall

np:

Nanoparticle

o:

Overall

w:

Water

th:

Thermal

Δ:

Increment

ƞ :

Efficiency (%)

References

  1. Bejan A, Kraus AD. Heat Transfer Hand Book. New York: Wiley; 2003.

    Google Scholar 

  2. Faghri Amir, Guo Zhen. Integration of heat pipe into fuel cell technology. Heat Transf Eng. 2008;29:232–8.

    Article  CAS  Google Scholar 

  3. Guo Qing, Guo Hang, Yan XK, Ye Fang, Ma CF. Influence of inclination angle on the start-up performance of a sodium-potassium alloy heat pipe. Heat Transf Eng. 2017. https://doi.org/10.1080/01457632.2017.1370325.

    Article  Google Scholar 

  4. Cheng Lixin, Xia Guodong, Li Qinling, Thome John R. Fundamental issues, technology development and challenges of boiling heat transfer, critical heat flux and two-phase flow phenomena with nanofluids. Heat Transf Eng. 2018. https://doi.org/10.1080/01457632.2018.1470285.

    Article  Google Scholar 

  5. Buongiorno J, Venerus DC, Prabhat N, McKrell T, Townsend J, Christianson R, Tolmachev YV, Keblinski P, Hu LW, Alvarado JL, Bang IC, Bishnoi SW, Bonetti M, Botz F, Cecere A, Chang Y, Chen G, Chen H, Chung SJ, Chyu MK, Das SK, Paola RD, Ding Y, Dubois F, Dzido G, Eapen J, Escher W, Funfschilling D, Galand Q, Gao J, Gharagozloo PE, Goodson KE, Gutierrez JG, Hong H, Horton M, Iorio CS, Jarzêbski AB, Jiang Y, Jin LW, Kabelac S, Kamath A, Kedzierski MA, Kim C, Kim JH, Kim S, Kieng LG, Leong KC, Manna I, Michel B, Ni R, Patel HE, Philip J, Poulikakos D, Reynaud C, Savino R, Singh PK, Song P, Sundararajan T, Timofeeva E, Tritcak T, Turanov AN, Vaerenbergh SV, Wen D, Witharana S, Yang CC, Yeh WH, Zhao XZ, Zhou SQ. A benchmark study on the thermal conductivity of nanofluids. J Appl Phys. 2009;106:094312. https://doi.org/10.1063/1.3245330.

    Article  CAS  Google Scholar 

  6. Putra N, Septiadi WN, Rahman H, Irwansyah R. Thermal performance of screen mesh wick heat pipes with nanofluids. Exp Therm Fluid Sci. 2012;40:10–7. https://doi.org/10.1016/j.expthermflusci.2012.01.007.

    Article  CAS  Google Scholar 

  7. Moraveji MK, Razvarz S. Experimental investigation of aluminum oxide nanofluid on heat pipe thermal performance. Int Commun Heat Mass Transf. 2012;39:1444–8. https://doi.org/10.1016/j.icheatmasstransfer.2012.07.024.

    Article  CAS  Google Scholar 

  8. Ghanbarpour M, Nikkam N, Khodabandeh R, Toprak MS, Muhammed M. Thermal performance of screen mesh heat pipe with Al2O3 nanofluid. Exp Therm Fluid Sci. 2015;66:213–20. https://doi.org/10.1016/j.expthermflusci.2015.03.024.

    Article  CAS  Google Scholar 

  9. Kole M, Dey TK. Thermal performance of screen mesh wick heat pipes using water-based copper nanofluids. Appl Therm Eng. 2013;50:763–70. https://doi.org/10.1016/j.applthermaleng.2012.06.049.

    Article  CAS  Google Scholar 

  10. Shukla KN, Solomon AB, Pillai BC, Ibrahim M. Thermal performance of cylindrical heat pipe using nanofluids. J Thermophys Heat Transf. 2010;24:796–802. https://doi.org/10.2514/1.48749.

    Article  CAS  Google Scholar 

  11. Venkatachalapathy S, Kumaresan G, Suresh S. Performance analysis of cylindrical heat pipe using nanofluids—an experimental study. Int J Multiph Flow. 2015;72:188–97. https://doi.org/10.1016/j.ijmultiphaseflow.2015.02.006.

    Article  CAS  Google Scholar 

  12. Kumaresan G, Venkatachalapathy S, Asirvatham LG. Experimental investigation on enhancement in thermal characteristics of sintered wick heat pipe using CuO nanofluids. Int J Heat Mass Transf. 2014;72:507–16. https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.029.

    Article  CAS  Google Scholar 

  13. Tsai CY, Chien HT, Ding PP, Chan B, Luh TY, Chen PH. Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance. Mater Lett. 2004;58:1461–5. https://doi.org/10.1016/j.matlet.2003.10.009.

    Article  CAS  Google Scholar 

  14. Sadeghinezhad E, Mehrali M, Rosen MA, Akhiani AR, Latibari ST, Mehrali M, Metselaar HSC. Experimental investigation of the effect of graphene nanofluids on heat pipe thermal performance. Appl Therm Eng. 2016;100:775–87. https://doi.org/10.1016/j.applthermaleng.2016.02.071.

    Article  CAS  Google Scholar 

  15. Ramachandran R, Ganesan K, Rajkumar MR, Asirvatham LG, Wongwises S. Comparative study of the effect of hybrid nanoparticle on the thermal performance of cylindrical screen mesh heat pipe. Int Commun Heat Mass Transf. 2016;76:294–300. https://doi.org/10.1016/j.icheatmasstransfer.2016.05.030.

    Article  CAS  Google Scholar 

  16. Grab T, Gross U, Franzke U, Buschmann MH. Operation performance of thermosyphons employing titania and gold nanofluids. Int J Therm Sci. 2014;86:352–64. https://doi.org/10.1016/j.ijthermalsci.2014.06.019.

    Article  CAS  Google Scholar 

  17. Wang PY, Chen XJ, Liu ZH, Liu YP. Application of nanofluid in an inclined mesh wicked heat pipes. Thermochim Acta. 2012;539:100–8. https://doi.org/10.1016/j.tca.2012.04.011.

    Article  CAS  Google Scholar 

  18. Asirvatham LG, Nimmagadda R, Wongwises S. Heat transfer performance of screen mesh wick heat pipes using silver–water nanofluid. Int J Heat Mass Transf. 2013;60:201–9. https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.037.

    Article  CAS  Google Scholar 

  19. Saleh R, Putra N, Prakoso SP, Septiadi WN. Experimental investigation of thermal conductivity and heat pipe thermal performance of ZnO nanofluids. Int J Therm Sci. 2013;63:125–32. https://doi.org/10.1016/j.ijthermalsci.2012.07.011.

    Article  CAS  Google Scholar 

  20. Mozumder AK, Akon AF, Chowdhury MSH, Banik SC. Performance of heat pipe for different working fluids and fill ratios. J Mech Eng. 2010;41:96–102.

    Article  Google Scholar 

  21. Kumaresan G, Venkatachalapathy S. A review on heat transfer enhancement studies of heat pipes using nanofluids. Front Heat pipes. 2012. https://doi.org/10.5098/fhp.V3.4.3001.

    Article  Google Scholar 

  22. Cacua K, Buitrago-Sierra R, Herrera B, Pabon E, Murshed SMS. Nanofluids’ stability effects on the thermal performance of heat pipes. J Therm Anal Calorim. 2019;136:1597–614. https://doi.org/10.1007/s10973-018-7787-5.

    Article  CAS  Google Scholar 

  23. Gupta NK, Tiwari AK, Ghosh SK. Experimental study of thermal performance of nanofluid-filled and nanoparticles-coated mesh wick heat pipes. J Heat Transf. 2018. https://doi.org/10.1115/1.4040146.

    Article  Google Scholar 

  24. Jouhara H, Chauhan A, Nannou T, Almahmoud S, Delpech B, Wrobel LC. Heat pipe based systems—advances and applications. Energy. 2017;128:729–54. https://doi.org/10.1016/j.energy.2017.04.028.

    Article  Google Scholar 

  25. Khalid SU, Babar H, Ali HM, et al. Heat pipes: progress in thermal performance enhancement for microelectronics. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09820-7.

    Article  Google Scholar 

  26. Jyothi Sankar PR, Venkatachalapathy S, Asirvatham LG. Thermal performance enhancement studies using graphite nanofluid for heat transfer applications. Heat Transf. 2020. https://doi.org/10.1002/htj.21758.

    Article  Google Scholar 

  27. Nazari MA, Ghasempour R, Ahmadi MH. A review on using nanofluids in heat pipes. J Therm Anal Calorim. 2019;137:1847–55. https://doi.org/10.1007/s10973-019-08094-y.

    Article  CAS  Google Scholar 

  28. Jyothi Sankar PR, Venkatachalapathy S, Santhosh Kumar MC. Effect of hydrophilic coating on mesh wicks used in heat pipes. Surf Eng. 2019. https://doi.org/10.1080/02670844.2019.1695370.

    Article  Google Scholar 

  29. Kumaresan G, Vijayakumar P, Ravikumar M, Kamatchi R, Selvakumar P. Experimental study on effect of wick structures on thermal performance enhancement of cylindrical heat pipes. J Therm Anal Calorim. 2019;136:389–400. https://doi.org/10.1007/s10973-018-7842-2.

    Article  CAS  Google Scholar 

  30. Hopkins R, Faghri A, Khrustalev D. Flat miniature heat pipes with micro capillary grooves. J Heat Transf. 1999;121:102–9. https://doi.org/10.1115/1.2825922.

    Article  CAS  Google Scholar 

  31. Liu ZH, Zhu QZ. Application of aqueous nanofluids in a horizontal mesh heat pipe. Energy Conv Manag. 2011;52:292–300.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Advanced Thermal Sciences Laboratory, Karunya University, Coimbatore, Tamil Nadu, India, for extending the test facilities. The authors are also thankful to Mr. Jaya Seelan for his help in the fabrication of experimental setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Jyothi Sankar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jyothi Sankar, P.R., Venkatachalapathy, S., Asirvatham, L.G. et al. Effect of coated mesh wick on the performance of cylindrical heat pipe using graphite nanofluids. J Therm Anal Calorim 146, 297–309 (2021). https://doi.org/10.1007/s10973-020-09944-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09944-w

Keywords

Navigation