Skip to main content
Log in

Experimental study on effect of wick structures on thermal performance enhancement of cylindrical heat pipes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of varying wick structures viz. mesh, sintered and composite wick (sintered-mesh) on the thermal enhancement of cylindrical heat pipes is experimentally investigated. In addition, the investigation focused on the effect of inclination angle and heat input of heat pipe. Surfactant free CuO nano-fluid with a mass concentration of 1.0% is used as a working fluid. The energy and exergy analysis of heat pipe was also conducted at various conditions. To analyze the distinctive performance of composite heat pipe, a heat pipe is filled with DI water and the obtained results are compared with nanofluid results. The maximum heat transfer capability of composite heat pipe is improved by 35.71% and 18.75% compared with mesh and sintered wicks. The composite heat pipe with CuO nanofluid as working fluid instead of DI water improves the heat transport capacity by 11.76%. Surface temperature of heat pipe significantly reduces by varying the wick structure viz. mesh, sintered and composite wick. The composite heat pipe with 1.0 mass% of CuO nanofluid obtained 3.7 °C reduction in surface temperature at evaporator section compared with DI water. Thermal resistance of heat pipe is gradually reduces with increasing inclination angle. The maximum reduction is observed for composite wick, sintered and mesh wick heat pipes are 47.50, 43.70 and 24.39% respectively at 45° inclination angle compared with horizontal axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A :

Area (m2)

C p :

Specific heat (J kg K−1)

d :

Outer diameter (mm), particle size (nm)

k :

Thermal conductivity (W mK−1)

\(\dot{m}\) :

Mass flow rate (kg s−1)

Q :

Heat input (W)

q :

Heat flux (kW m−2)

R :

Thermal resistance (K W−1)

T :

Temperature (K)

ΔT :

Temperature difference (K)

c:

Condenser

e:

Evaporator

ex:

Exergy

in:

Input, inlet

hp:

Heat pipe

l:

Liquid

nf:

Nanofluid

out:

Outlet

s:

Surface

w:

Water

η :

Efficiency (%)

µ:

Dynamic viscosity (Nm s−1)

θ :

Tilt angle (degree)

σ :

Surface tension (mN m−1)

References

  1. Kumar V, Gangacharyulu D, Tathgir RG. Heat transfer studies of a heat pipe. Heat Transf Eng. 2007;28(11):954–65.

    Article  CAS  Google Scholar 

  2. Liu ZH, Li L. Thermal performance of axially micro-grooved heat pipe using carbon nanotube suspensions. J Thermophys Heat Transfer. 2009;23:170–5.

    Article  CAS  Google Scholar 

  3. Vijayakumar M, Navaneethakrishnan P, Kumaresan G, Kamatchi R. A study on heat transfer characteristics of inclined copper sintered wick heat pipe using surfactant free CuO and Al2O3 nanofluids. J Taiwan Inst Chem Eng. 2017;81:190–8.

    Article  CAS  Google Scholar 

  4. Asirvatham LG, Nimmagadda R, Wongwises S. Heat transfer performance of screen mesh wick heat pipes using silver–water nanofluid. Int J Heat Mass Transf. 2013;60:201–9.

    Article  CAS  Google Scholar 

  5. Kumaresan G, Venkatachalapathy S, Asirvatham LG. Experimental investigation on enhancement in thermal characteristics of sintered wick heat pipe using CuO nanofluids. Int J Heat Mass Transf. 2014;72:507–16.

    Article  CAS  Google Scholar 

  6. Motevasel M, Nazar ARS, Jamialahmadi M. Experimental study on turbulent convective heat transfer of water-based nanofluids containing alumina, copper oxides and silicon carbide nanoparticles. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7314-8.

    Article  Google Scholar 

  7. Motlagh SY, Sharifi A, Ahmadi M, Badfar H. Presentation of new thermal conductivity expression for Al2O3–water and CuO–water nanofluids using gene expression programming (GEP). J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7305-9.

    Article  Google Scholar 

  8. Kiatsiriroat T, Nuntaphan A, Tiansuwan J. Thermal performance enhancement of thermosyphon heat pipe with binary working fluids. Exp Heat Transf: A J Therm Energy Gener, Transp, Storage, Convers. 2000;13(2):137–52.

    Article  Google Scholar 

  9. Paramatthanuwat T, Boothaisong S, Rittidech S, Booddachan K. Heat transfer characteristics of a two-phase closed thermosyphon using de ionized water mixed with silver nano. Heat Mass Transfer. 2017;46:281–5.

    Article  CAS  Google Scholar 

  10. Hassan H, Harmand S. A three-dimensional study of electronic component cooling using a flat heat pipe. Heat Transf Eng. 2013;34(7):596–607.

    Article  CAS  Google Scholar 

  11. Hassan H, Harmand S. An experimental and numerical study on the effects of the flat heat pipe wick structure on its thermal performance. Heat Transf Eng. 2014. https://doi.org/10.1080/01457632.2014.916157.

    Article  Google Scholar 

  12. Solomon AB, Ramachandran K, Asirvatham LG, Pillai BC. Numerical analysis of a screen mesh wick heat pipe with Cu/water nanofluid. Int J Heat Mass Transf. 2014;75:523–33.

    Article  CAS  Google Scholar 

  13. Wu HY, Cheng P. Thermal performance of an oscillating heat pipe with Al2O3-water nanofluids. Int Commun Heat Mass Transf. 2010;37:111–5.

    Article  CAS  Google Scholar 

  14. Solomon AB, Ramachandran K, Pillai BC. Thermal performance of anodized two phase closed thermosyphon (TPCT). Exp Therm Fluid Sci. 2013;48:49–57.

    Article  Google Scholar 

  15. Park KH, Lee WH, Lee KW, Baek IH, Rhi SH, Shin DR. Study on the operating characteristics in small size heat pipe using nanofluids. In: Proceedings 3rd IASME/WSEAS Int. Conf. on Heat Transfer, Thermal Eng. Environment. 2005. pp. 106–109.

  16. Tsai Y-S, Chang Y-M, Chan J-H, Wu S-C, Chen Y-M. Enhancement of thermal performance in a sintered miniature heat pipe. J Chin Inst Eng. 2005;28(2):359–63.

    Article  Google Scholar 

  17. Kumaresan G, Venkatachalapathy S. A review on heat Transfer enhancement studies of heat pipes using nanofluids. Front Heat Pipes. 2012;3(4):1–8.

    Google Scholar 

  18. Mashaei PR, Shahryari M, Madani S. Numerical hydrothermal analysis of water-Al2O3 nanofluid forced convection in a narrow annulus filled by porous medium considering variable properties. J Therm Anal Calorim. 2016;126(2):891–904.

    Article  CAS  Google Scholar 

  19. Mohseni-Gharyehsafa B, Ebrahimi-Moghadam A, Okati V, Farzaneh-Gord M, Ahmadi MH, Lorenzini G. Optimizing flow properties of the different nanofluids inside a circular tube by using entropy generation minimization approach. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7276-x.

    Article  Google Scholar 

  20. Toghraie D, Mahmoudi M, Akbari OA, Pourfattah F, Heydari M. The effect of using water/CuO nanofluid and L-shaped porous ribs on the performance evaluation criterion of microchannels. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7254-3.

    Article  Google Scholar 

  21. Kumaresan G, Venkatachalapathy S, Asirvatham LG, Wongwises S. Comparative study on heat transfer characteristics of sintered and mesh wick heat pipes using CuO nanofluids. Int Commun Heat Mass Transfer. 2014;57:208–15.

    Article  CAS  Google Scholar 

  22. Franchi George, Huang Xiao. Development of composite wicks for heat pipe performance enhancement. Heat Transf Eng. 2010;29(10):873–84.

    Article  CAS  Google Scholar 

  23. Khaleduzzaman SS, Sohel MR, et al. Energy and exergy analysis of alumina–water nanofluid for an electronic liquid cooling system. Int Commun Heat Mass Transf. 2014;57:118–27.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kumaresan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumaresan, G., Vijayakumar, P., Ravikumar, M. et al. Experimental study on effect of wick structures on thermal performance enhancement of cylindrical heat pipes. J Therm Anal Calorim 136, 389–400 (2019). https://doi.org/10.1007/s10973-018-7842-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7842-2

Keywords

Navigation