Skip to main content
Log in

Darcy flow of polymer from an inclined plane with convective heat transfer analysis: a numerical study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

An analytical model is developed to study the Darcy flows in viscoelastic convection from an inclined plate as a simulation of electro-conductive polymer materials processing with Biot number effects. The Jeffery’s viscoelastic model describes the non-Newtonian characteristics of the fluid and provides a good approximation for polymers, which constitutes a novelty of the present work. The normalized nonlinear boundary value problem is solved computationally with the Keller Box implicit finite difference technique. Extensive solutions for velocity, surface temperature, skin friction and heat transfer rate are visualized numerically and graphically for various thermophysical parameters. Validation is conducted with earlier published work for the case of a vertical plate in the absence of non-Newtonian effects. The boundary layer flow is accelerated with increase in Deborah number, whereas temperatures are decelerated slightly. Temperatures are boosted with increase in inclination parameter, whereas velocity is lowered. A reverse trend is seen for increasing mixed convection parameter. Increase in Biot number enhances both velocity and temperature. Increasing Darcy number is found to enhance velocity, whereas it suppresses temperature. This particle study finds applications in different industries like reliable equipment design, nuclear plants, gas turbines and different propulsion devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

Cf :

Skin friction coefficient

cp :

Specific heat (J K−1 kg−1)

Da:

Darcy parameter

De:

Local Deborah number (–)

F:

Dimensionless stream function (–)

G:

Gravitational acceleration (m s− 2)

Gr:

Thermal Grashof number (–)

hw :

Convective heat transfer coefficient

K:

Thermal conductivity of the fluid (W m−1k−1)

L:

Characteristic length (m)

Nu:

Heat transfer coefficient (–)

Pr:

Prandtl number

P:

Pressure

R:

Mixed convection parameter

Re:

Reynolds number

Rex :

Local Reynolds number

S :

Cauchy stress tensor

T:

Fluid temperature (K)

T :

Cauchy stress tensor

V :

Velocity vector (m s− 1)

u, v :

Dimensionless velocity components in X and Y direction, respectively (m s− 2)

x :

Stream wise coordinate

y :

Transverse coordinate

α:

Thermal diffusivity (m2 s− 1)

β:

Coefficient of thermal expansion (ppm/°F)

λ:

Ratio of relaxation to retardation times

λ1 :

Retardation time (s)

σ:

Electric conductivity of the fluid (kg−1 m−3 s3 A2)

Ω:

Angle of inclination

μ:

Dynamic viscosity (Ns m−2)

ξ:

Non-dimensional tangential coordinate

ν:

Kinematic viscosity (Ns m−2)

θ:

Dimensionless temperature

ρ:

Fluid density (kg m−3)

ψ:

Non-dimensional stream function

γ:

Thermal Biot number

η:

Dimensionless radial coordinate

w:

Conditions on the wall

∞:

Free stream condition

References

  1. Huang X, Gollner MJ. Correlations for evaluation of flame spread over an inclined fuel surface. Fire Saf Sci. 2014;11:222–33.

    Article  Google Scholar 

  2. Cheng P. Film condensation along an inclined surface in a porous medium. Int J Heat Mass Transf. 1981;24:983–90.

    Article  Google Scholar 

  3. Bég OA, Zueco J, Chang TB. Numerical analysis of hydromagnetic gravity-driven thin film micropolar flow along an inclined plane. Chem Eng Comm. 2010;198(3):312–31.

    Article  CAS  Google Scholar 

  4. Balmforth NJ, et al. Viscoplastic flow over an inclined surface. J Non-Newton Fluid Mech. 2007;142(1–3):219–43.

    Article  CAS  Google Scholar 

  5. Ashraf MB, et al. Radiative mixed convection flow of an Oldroyd-B fluid over an inclined stretching surface. J Appl Mech Tech Phys. 2016;57:317–25.

    Article  CAS  Google Scholar 

  6. Pruess K, Zhang Y. A hybrid semi-analytical and numerical method for modeling wellbore heat transmission. In: Proceedings of 30th workshop on geothermal reservoir engineering, Stanford University, Stanford, California, USA (2005).

  7. Greener Y, Middleman S. Blade-coating of a viscoelastic fluid. Poly Eng Sci. 1974;14:791–6.

    Article  CAS  Google Scholar 

  8. Chang H-C, Demekhin EA. Complex wave dynamics on thin films. Amsterdam: Elsevier; 2002.

    Google Scholar 

  9. Ilias MR, Rawi NA. Steady aligned MHD free convection of ferrofluids flow over an inclined plate. J Mech Eng. 2017;4(2):1–15.

    Google Scholar 

  10. Johnson AF. Rheology of thermoplastic composites I. Compos Manuf. 1995;6:153–60.

    Article  CAS  Google Scholar 

  11. Nsom B, Ramifidisoa L, Latrache N, Ghaemizadeh F. Linear stability of shear-thinning fluid down an inclined plane. J Mol Liq. 2019;227:1036–46.

    Article  CAS  Google Scholar 

  12. Mukhopadhyay A, Chattopadhyay S. Long wave instability of thin film flowing down an inclined plane with linear variation of thermophysical properties for very small Biot number. Int J Non-Linear Mech. 2018;100:20–9.

    Article  Google Scholar 

  13. Mehmood OU, Maskeen MM, Zeeshan A. Hydromagnetic transport of dust particles in gas flow over an inclined plane with thermal radiation. Res Phys. 2017;7:1932–9.

    Google Scholar 

  14. Roy NepalC, Hossain Anwar, Gorla RSR. Combustible boundary-layer flows along inclined hot surfaces with streamwise surface temperature variations. J Thermophys Heat Trans. 2018. https://doi.org/10.2514/1.T5465.

    Article  Google Scholar 

  15. Sulochana C, Ashwinkumar GP, Sandeep N. Effect of frictional heating on mixed convection flow of chemically reacting radiative Casson nanofluid over an inclined porous plate. Alex Eng J. 2017. https://doi.org/10.1016/j.aej.2017.08.006.

    Article  Google Scholar 

  16. Sui Jize, Zheng Liancun, Zhang Xinxin, Chen Goong. Mixed convection heat transfer in power law fluids over a moving conveyor along an inclined plate. Int J Heat Mass Trans. 2015;85:1023–33.

    Article  Google Scholar 

  17. Guha Abhijit, Jain Akshat, Pradhan Kaustav. Computation and physical explanation of the thermos-fluid-dynamics of natural convection around heated inclined plates with inclination varying from horizontal to vertical. Int J Heat Mass Tranf. 2019;135:1130–51.

    Article  Google Scholar 

  18. RamReddy P, Naveen P, Srinivasacharya D. Influence of non-linear Boussinesq approximation on natural convective flow of a power-law fluid along an inclined plate under convective thermal boundary condition. Nonlinear Eng. 2018. https://doi.org/10.1515/nleng-2017-0138.

    Article  Google Scholar 

  19. RamReddy Ch, Naveen P, Srinivasacharya D. Nonlinear convective flow of non-Newtonian fluid over an inclined plate with convective surface condition: a Darcy-Forchheimer Model. Int J Appl Comput Math. 2018. https://doi.org/10.1007/s40819-018-0484-z.

    Article  Google Scholar 

  20. RamReddy Ch, Naveen P, Srinivasacharya D. Quadratic convective flow of a micropolar fluid along an inclined plate in a non-Darcy porous medium with convective boundary condition. Nonlinear Eng. 2017. https://doi.org/10.1515/nleng-2016-0073.

    Article  Google Scholar 

  21. Shaw MT. Introduction to polymer Rheology. New York: Wiley; 2012.

    Google Scholar 

  22. Hayat T, Qayyam S, Imtiaz M, Alsaedi A. Impact of Cattaneo-Christov heat flux in Jeffrey fluid flow with homogeneous-heterogeneous reactions. PLoS One. 2016;11(2):e0148662.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Narayana PVS, Babu DH, Babu MS. Numerical study of a Jeffrey fluid over a porous stretching sheet with heat source/sink. Int J Fluid Mech Res. 2019;46(2):187–97.

    Article  Google Scholar 

  24. Prasad VR, Gaffar SA, Reddy EK, Bég OA. Numerical study of non-Newtonian boundary layer flow of Jeffreys fluid past a vertical porous plate in a non-Darcy porous medium. Int J Comp Meth Eng Sci Mech. 2014;15(4):372–89.

    Article  Google Scholar 

  25. Gaffar SA, Prasad VR, Bég OA, Khan MK, Venkatadri K. Effects of ramped wall temperature and concentration on viscoelastic Jeffrey’s fluid flows from a vertical permeable cone. J Braz Soc Mech Sci Eng. 2018;40:441–59.

    Article  CAS  Google Scholar 

  26. Kumar M, Reddy GJ, Dalir N. Transient entropy analysis of the magnetohydrodynamics flow of a Jeffrey fluid past an isothermal vertical flat plate. Pramana. 2018;91:60.

    Article  CAS  Google Scholar 

  27. Kumar M, Reddy GJ, Reddy R. Transient analysis of viscoelastic fluid past a semi-infinite vertical cylinder with respect to Deborah and Hartmann numbers. J Them Anal Calorim. 2020;139:507–17.

    Article  CAS  Google Scholar 

  28. Manjunatha G, Rajashekar C, Vaidya H, Prasad KV, Vajravelu K. Impact of heat and mass transfer on the peristaltic mechanism of Jeffery fluid in a non-uniform porous channel with variable viscosity and thermal conductivity. J Them Anal Calorim. 2020;139:1213–28.

    Article  CAS  Google Scholar 

  29. Haq SU, Haq EU, Khan MA, Khan I. The effects of coupled heat and mass transfer in the fractional Jeffrey fluid over inclined plane. J Them Anal Calorim. 2020;139:1355–65.

    Article  CAS  Google Scholar 

  30. Ramesh K. Effects of viscous dissipation and Joule heating on the Couette and Poiseuille flows of a Jeffrey fluid with slip boundary conditions. Propuls Power Res. 2018;7(4):329–41.

    Article  Google Scholar 

  31. Selvi CK, Srinivas ANS. Pulsatile flow of Jeffrey fluid in a porous elastic tube with variable cross-section under the effect of magnetic field. Therm Sci Eng Prog. 2018;8:439–47.

    Article  Google Scholar 

  32. Divya BB, Manjunatha G, Rajashekhar C, Vaidya H, Prasad KV. The hemodynamics of variable liquid properties on the MHD peristaltic mechanism of Jeffrey fluid with heat and mass transfer. Alex Eng J. 2020;59(2):693–706.

    Article  Google Scholar 

  33. Yasmeen Shagufta, Asghar Saleem. Hafiz Junaid Anjum, Tayyaba Ehsan, Analysis of Hartmann boundary layer peristaltic flow of Jeffrey fluid: quantitative and qualitative approaches. Commun Nonlinear Sci Numer Simul. 2019;76:51–65.

    Article  Google Scholar 

  34. Nield DA, Bejan A. Convection in porous media. 2nd ed. Berlin: Springer; 1998.

    Google Scholar 

  35. Reddy PS, Sreedevi P, Chamkha AJ, AF Al-Mudhaf AF. Heat and mass transfer boundary-layer flow over a vertical cone through porous media filled with a Cu-water and Ag-water nanofluid. Heat Transf Res. 2018;49(2):119–43. https://doi.org/10.1615/heattransres.2017016247.

    Article  Google Scholar 

  36. NF Mohammad, I Waini, ARM Kasim, NA Majid. Unsteady boundary layer flow over a sphere in a porous medium. In: AIP conference proceedings, 2017;1870:040076. https://doi.org/10.1063/1.4995908 .

  37. Khan B, Prasad VR, Vijaya RB. Thermal radiation on mixed convective flow in a porous cavity: numerical simulation. Nonlinear Eng Model Appl. 2018;7(4):253–61. https://doi.org/10.1515/nleng-2017-0053.

    Article  Google Scholar 

  38. Al-Rashed AAAA, Sheikhzadeh GA, Aghaei A, Monfared F, Shahsavar A, Afrand M. Effect of a porous medium on flow and mixed convection heat transfer of nanofluids with variable properties in a trapezoidal enclosure. J Them Anal Calorim. 2020;137:741–54.

    Article  CAS  Google Scholar 

  39. Vo DD, Hedayat MA, Ambreen T, Shehzad SA, Sheikholeslami M, Shafee A, Khang T, Nguyen. Effectiveness of various shapes of Al203 nanoparticles on the MHD convective heat transportation in porous medium. J Therm Anal Calorim. 2020;139:1345–53.

    Article  CAS  Google Scholar 

  40. Ahmad K, Ishak A. Magnetohydrodynamic (MHD) Jeffrey fluid over a stretching vertical surface in a porous medium. Propul Power Res. 2017;6(4):269–76.

    Article  Google Scholar 

  41. Ojjela Odelu, Raju Adigoppula. Pravin Kashyap Kambhatla, Influence of thermophoresis and induced magnetic field on chemically reacting mixed convective flow of Jeffrey fluid between porous parallel plates. J Mol Liq. 2017;232:195–206.

    Article  CAS  Google Scholar 

  42. Krishna MV, Ahamad NA, Chamkha AJ. Hall and ion slip effects on unsteady MHD free convective rotating flow through a saturated porous medium over an exponential accelerated plate. Alex Eng J. 2020;59(2):565–77.

    Article  Google Scholar 

  43. Geridonmez BP, Oztop HF. Natural convection in a cavity filled with porous medium under the effect of a partial magnetic field. Int J Mech Sci. 2019;161–162:105077.

    Article  Google Scholar 

  44. Khan ZH, Makinde OD, Hamid M, Ul Haq R, Khan WA. Hydromagnetic flow of ferrofluid in an enclosed partially heated trapezoidal cavity filled with a porous medium. J Magn Magn Mater. 2020;499:166241.

    Article  CAS  Google Scholar 

  45. Fadaei F, Shahrokhi M, Molaei A, Dehkordi, Abbasi Z. Forced-convection heat transfer of ferrofluids in a circular duct partially filled with porous medium in the presence of magnetic field. J Magn Magn Mater. 2019;475:304–15.

    Article  CAS  Google Scholar 

  46. Sheikholeslami M. Lattice Boltzmann method simulation for MHD non-Darcy nanofluid free convection. Phys B. 2017;516:55–71.

    Article  CAS  Google Scholar 

  47. Sheikholeslami Mohsen. Application of Darcy law for nanofluid flow in a porous cavity under the impact of Lorentz forces. J Mol Liq. 2018;266:495–503.

    Article  CAS  Google Scholar 

  48. Chaudhary K, Sharma A, Jha AK. Laminar mixed convection flow from a vertical surface with induced magnetic field and convective boundary. Int J Appl Mech Eng. 2018;23(2):307–26.

    Article  CAS  Google Scholar 

  49. Shaw Sachin, Mahanta Ganewsar, Sibanda Precious. Non-linear thermal convection in a Casson fluid flow over a horizontal plate with convective boundary condition. Alex Eng J. 2016;55:1295–304.

    Article  Google Scholar 

  50. Ramesh K, Akbar NS, Usman M. Biomechanically driven flow of a magnetohydrodynamic bio-fluid in a micro-vessel with slip and convective boundary conditions. Microsyst Technol. 2018. https://doi.org/10.1007/s00542-018-3945-8.

    Article  Google Scholar 

  51. Srinivasacharya D, RamReddy C, Naveen P. Effects of nonlinear Boussinesq approximation and double dispersion on a micropolar fluid flow under convective thermal condition. Heat Transf Asian Res. 2019;48(1):414–34. https://doi.org/10.1002/htj.21391.

    Article  Google Scholar 

  52. Kumar PBS, Mahanthesh B, Gireesha BJ, Shehzad SA. Quadratic convective flow of radiated nano-Jeffrey liquid subject to multiple convective conditions and Cattaneo-Christov double diffusion. Appl Math Mech. 2018;39(9):1311–26. https://doi.org/10.1007/s10483-018-2362-9.

    Article  Google Scholar 

  53. Zuo W, Li J, Zhang Y, Li Q, Jia S, He Z. Multi-factor impact mechanism on combustion efficiency of a hydrogen-fueled micro-cylindrical combustor. Int J Hydrog Energy. 2020;45(3):2319–30. https://doi.org/10.1016/j.ijhydene.2019.11.012.

    Article  CAS  Google Scholar 

  54. Maceiras A, Martins P. High-temperature polymer based magnetoelectric nanocomposites. Eur Polym J. 2015;64:224–8.

    Article  CAS  Google Scholar 

  55. Xulu PM, Filipcsei P, Zrinyi M. Preparation and responsive properties of magnetically soft poly (N-isopropylacrylamide) gels. Macromolecules. 2000;33(5):1716–9.

    Article  CAS  Google Scholar 

  56. Bég OA. Chapter 1 Numerical methods for multi-physical magnetohydrodynamics. In: Ibragimov MJ, Anisimov MA, editors. New developments in hydrodynamics research. New York: Nova Science; 2012. p. 1–112.

    Google Scholar 

  57. Gaffar SA, Bég OA, Prasad VR. Mathematical modelling of natural convection in a third grade viscoelastic micropolar fluid from an isothermal inverted cone. Iran J Sci Technol Trans Mech Eng. 2018. https://doi.org/10.1007/s40997-018-0262-x.

    Article  Google Scholar 

  58. Gaffar SA, Prasad VR, Kumar BR, Bég OA. Computational modelling and solutions for mixed convection boundary layer flows of nanofluid from a non-isothermal wedge. J. Nanofluids. 2018;7:1–9.

    Article  Google Scholar 

  59. Makinde OD, Olanrewaju PO. Buoyancy effects on thermal boundary layer over a vertical plate with convective surface boundary condition. J Fluids Eng. 2010;132(4):044502. https://doi.org/10.1115/1.4001386.

    Article  Google Scholar 

  60. Daniel AA, Seini YI. MHD boundary layer flow past an inclined plate with viscous dissipation. Am J Comput Appl Math. 2016;6(4):149–61. https://doi.org/10.5923/j.ajcam.20160604.01.

    Article  Google Scholar 

  61. Sochi T. Non-Newtonian flow in porous media. Polymer. 2010;51:5007–23.

    Article  CAS  Google Scholar 

  62. Rohsenow WM, Hartnett JP, Ganic EN. Handbook of heat transfer fundamentals. 2nd ed. New York: Mac-Graw-Hill; 1985.

    Google Scholar 

  63. Norouzi M, Davoodi M, Bég OA, Shamshuddin MD. Theoretical study of Oldroyd-B visco-elastic fluid flow through curved pipes with slip effects in polymer flow processing. Int J Appl Comput Math. 2018;4:108. https://doi.org/10.1007/s40819-018-0541-7.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to DST-WOS-A [Ref: N0. SR/WOS-A/MS-09/2014(G)], New Delhi, for financial support and the management of Madanapalle Institute of Technology and Science, Madanapalle for providing research facilities in the campus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abdul Gaffar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhavi, K., Prasad, V.R. & Gaffar, S.A. Darcy flow of polymer from an inclined plane with convective heat transfer analysis: a numerical study. J Therm Anal Calorim 146, 117–129 (2021). https://doi.org/10.1007/s10973-020-09942-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09942-y

Keywords

Navigation