Skip to main content
Log in

Fouling and fouling mitigation of mineral salt using bio-based functionalized graphene nano-plates

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Fouling or scaling is the formation of deposits on heat exchanger surfaces which are mostly unwanted compounds formed from the precipitation of the dissolved salts and that retard heat transfer from the surfaces. In many industries, acid is used to dissolve and clean the deposits from the heat transfer surfaces. Nevertheless, the excessive use of acids has caused major safety hazards and created environmental issues to the public. Among the additives used for fouling mitigation, a major share of them is hazardous to the environment and injurious to health, so it was essential to explore eco-friendly additives. The present research investigated the mitigation of calcium carbonate scaling by applying functionalized graphene nano-platelets (FGNP) nanofluids as additives to the fouling liquids on pipe heat exchangers. In addition, the additive used in the present research was functionalized by bio-based method, which was eco-friendly, and unlike most of the available environmental hazardous additives. The deposition of calcium carbonate on the heat exchanger surface and the crystal growth were investigated by the analyses of total deposits, fouling resistance evaluation and conducting crystal characterization by using field emission scanning electron microscope. It was observed that the total deposition, crystal size and compactness of fouling deposition of CaCO3 were retarded with the increase in FGNP concentration in the fouling liquid. From the results, it was seen that the rate of additive effectiveness gradually diminished with the rate of enhancement of additives in the fouling solution and the total effect was more prominent with the higher percentage of additives in the fouling solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kuppan T. Heat exchanger design handbook. New York: Marcel Dekker; 2000.

    Google Scholar 

  2. Abdelrazek AH, Kazi SN, Alawi OA, Yusoff N, Oon CS, Ali HM. Heat transfer and pressure drop investigation through pipe with different shapes using different types of nanofluids. J Therm Anal Calorim. 2019;139:1637–53. https://doi.org/10.1007/s10973-019-08562-5.

    Article  CAS  Google Scholar 

  3. Oon CS, Amiri A, Chew BT, Kazi SN, Shaw A, Al-Shamma’a A. Increase in convective heat transfer over a backward-facing step immersed in a water-based TiO2 nanofluid. Heat Transf Res. 2018;49(15):1419–29. https://doi.org/10.1615/heattransres.2018017043.

    Article  Google Scholar 

  4. Zubir MNM, Muhamad MR, Amiri A, Badarudin A, Kazi SN, Oon CS, et al. Heat transfer performance of closed conduit turbulent flow: constant mean velocity and temperature do matter! J Taiwan Inst Chem Eng. 2016;64:285–98. https://doi.org/10.1016/j.jtice.2016.04.013.

    Article  CAS  Google Scholar 

  5. Mirzaei M, Hajabdollahi H, Fadakar H. Multi-objective optimization of shell-and-tube heat exchanger by constructal theory. Appl Therm Eng. 2017;125:9–19. https://doi.org/10.1016/j.applthermaleng.2017.06.137.

    Article  Google Scholar 

  6. Ramezanizadeh M, Ahmadi MA, Ahmadi MH, Alhuyi Nazari M. Rigorous smart model for predicting dynamic viscosity of Al2O3/water nanofluid. J Therm Anal Calorim. 2019;137(1):307–16. https://doi.org/10.1007/s10973-018-7916-1.

    Article  CAS  Google Scholar 

  7. Maddah H, Aghayari R, Ahmadi MH, Rahimzadeh M, Ghasemi N. Prediction and modeling of MWCNT/Carbon (60/40)/SAE 10 W 40/SAE 85 W 90(50/50) nanofluid viscosity using artificial neural network (ANN) and self-organizing map (SOM). J Therm Anal Calorim. 2018;134(3):2275–86. https://doi.org/10.1007/s10973-018-7827-1.

    Article  CAS  Google Scholar 

  8. Ahmadi MH, Ahmadi MA, Nazari MA, Mahian O, Ghasempour R. A proposed model to predict thermal conductivity ratio of Al2O3/EG nanofluid by applying least squares support vector machine (LSSVM) and genetic algorithm as a connectionist approach. J Therm Anal Calorim. 2019;135(1):271–81. https://doi.org/10.1007/s10973-018-7035-z.

    Article  CAS  Google Scholar 

  9. Ahmadi MH, Alhuyi Nazari M, Ghasempour R, Madah H, Shafii MB, Ahmadi MA. Thermal conductivity ratio prediction of Al2O3/water nanofluid by applying connectionist methods. Colloids Surf A. 2018;541:154–64. https://doi.org/10.1016/j.colsurfa.2018.01.030.

    Article  CAS  Google Scholar 

  10. Maddah H, Aghayari R, Mirzaee M, Ahmadi MH, Sadeghzadeh M, Chamkha AJ. Factorial experimental design for the thermal performance of a double pipe heat exchanger using Al2O3–TiO2 hybrid nanofluid. Int Commun Heat Mass Transf. 2018;97:92–102. https://doi.org/10.1016/j.icheatmasstransfer.2018.07.002.

    Article  CAS  Google Scholar 

  11. Liu L, Ding N, Shi J, Xu N, Guo W, Wu C-ML. Failure analysis of tube-to-tubesheet welded joints in a shell-tube heat exchanger. Case Stud Eng Fail Anal. 2016;7:32–40. https://doi.org/10.1016/j.csefa.2016.06.002.

    Article  Google Scholar 

  12. Dalkılıç AS, Mercan H, Özçelik G, Wongwises S. Optimization of the finned double-pipe heat exchanger using nanofluids as working fluids. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09290-x.

    Article  Google Scholar 

  13. Gopi SP, Subramanian V. Polymorphism in CaCO3—effect of temperature under the influence of EDTA (di sodium salt). Desalination. 2012;297:38–47.

    Article  CAS  Google Scholar 

  14. Palanisamy K, Subramanian V. CaCO3 scale deposition on copper metal surface; effect of morphology, size and area of contact under the influence of EDTA. Powder Technol. 2016;294:221–5.

    Article  CAS  Google Scholar 

  15. Song KS, Lim J, Yun S, Kim D, Kim Y. Composite fouling characteristics of CaCO3 and CaSO4 in plate heat exchangers at various operating and geometric conditions. Int J Heat Mass Transf. 2019;136:555–62. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.032.

    Article  CAS  Google Scholar 

  16. Xu Z, Zhao Y, Wang J, Chang H. Inhibition of calcium carbonate fouling on heat transfer surface using sodium carboxymethyl cellulose. Appl Therm Eng. 2019;148:1074–80. https://doi.org/10.1016/j.applthermaleng.2018.11.088.

    Article  CAS  Google Scholar 

  17. Kazi S, Duffy G, Chen XD. Fouling and fouling mitigation on heated metal surfaces. Desalination. 2012;288:126–34.

    Article  CAS  Google Scholar 

  18. Kazi S, Duffy G, Chen X. Fouling mitigation of heat exchangers with natural fibres. Appl Therm Eng. 2013;50(1):1142–8.

    Article  Google Scholar 

  19. Kazi S. Fouling and fouling mitigation on heat exchanger surfaces. Heat exchangers—basics design applications. London: IntechOpen; 2012.

    Google Scholar 

  20. Awais M, Bhuiyan AA. Recent advancements in impedance of fouling resistance and particulate depositions in heat exchangers. Int J Heat Mass Transf. 2019;141:580–603. https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.011.

    Article  Google Scholar 

  21. He ZR, Liu CS, Jie XH, Lian WQ, Luo ST. Preparation of anti-fouling heat transfer surface by magnetron sputtering a-C film on electrical discharge machining Cu surface. Surf Coat Technol. 2019;369:44–51. https://doi.org/10.1016/j.surfcoat.2019.03.075.

    Article  CAS  Google Scholar 

  22. Kumar N, Singh P, Redhewal AK, Bhandari P. A review on nanofluids applications for heat transfer in micro-channels. Procedia Eng. 2015;127:1197–202. https://doi.org/10.1016/j.proeng.2015.11.461.

    Article  CAS  Google Scholar 

  23. Wong KV, De Leon O. Applications of nanofluids: current and future. Adv Mech Eng. 2010;2:519659. https://doi.org/10.1155/2010/519659.

    Article  Google Scholar 

  24. Seo DH, Pineda S, Woo YC, Xie M, Murdock AT, Ang EYM, et al. Anti-fouling graphene-based membranes for effective water desalination. Nat Commun. 2018;9(1):683. https://doi.org/10.1038/s41467-018-02871-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gong B, Yang H, Wu S, Xiong G, Yan J, Cen K, et al. Graphene array-based anti-fouling solar vapour gap membrane distillation with high energy efficiency. Nano-Micro Lett. 2019;11(1):51. https://doi.org/10.1007/s40820-019-0281-1.

    Article  Google Scholar 

  26. Rezaei M, Warsinger DM, Samhaber WM. Wetting prevention in membrane distillation through superhydrophobicity and recharging an air layer on the membrane surface. J Membr Sci. 2017;530:42–52.

    Article  CAS  Google Scholar 

  27. Hou D, Wang Z, Wang K, Wang J, Lin S. Composite membrane with electrospun multiscale-textured surface for robust oil-fouling resistance in membrane distillation. J Membr Sci. 2018;546:179–87.

    Article  CAS  Google Scholar 

  28. Matin A, Rahman F, Shafi HZ, Zubair SM. Scaling of reverse osmosis membranes used in water desalination: phenomena, impact, and control; future directions. Desalination. 2019;455:135–57. https://doi.org/10.1016/j.desal.2018.12.009.

    Article  CAS  Google Scholar 

  29. Boo C, Lee J, Elimelech M. Engineering surface energy and nanostructure of microporous films for expanded membrane distillation applications. Environ Sci Technol. 2016;50(15):8112–9.

    Article  CAS  Google Scholar 

  30. Boo C, Lee J, Elimelech M. Omniphobic polyvinylidene fluoride (PVDF) membrane for desalination of shale gas produced water by membrane distillation. Environ Sci Technol. 2016;50(22):12275–82.

    Article  CAS  Google Scholar 

  31. Kumar RS, Arthanareeswaran G, Paul D, Kweon JH. Modification methods of polyethersulfone membranes for minimizing fouling—review. Membr Water Treat. 2015;6(4):323–37.

    Article  Google Scholar 

  32. Jiang L, Tang Z, Park-Lee KJ, Hess DW, Breedveld V. Fabrication of non-fluorinated hydrophilic-oleophobic stainless steel mesh for oil-water separation. Sep Purif Technol. 2017;184:394–403.

    Article  CAS  Google Scholar 

  33. Müller-Steinhagen H, Malayeri MR, Watkinson AP. Heat exchanger fouling: environmental impacts. Heat Transf Eng. 2009;30(10–11):773–6. https://doi.org/10.1080/01457630902744119.

    Article  CAS  Google Scholar 

  34. Kazi SN, Duffy GG, Chen XD. Mineral scale formation and mitigation on metals and a polymeric heat exchanger surface. Appl Therm Eng. 2010;30(14–15):2236–42. https://doi.org/10.1016/j.applthermaleng.2010.06.005.

    Article  CAS  Google Scholar 

  35. Amjad Z, Zuhl R. An evaluation of silica scale control additives for industrial water systems. New Orleans: NACE International; 2008.

    Google Scholar 

  36. Hoang TA, Ang HM, Rohl AL. Effects of organic additives on calcium sulfate scaling in pipes. Aust J Chem. 2009;62(8):927–33.

    Article  CAS  Google Scholar 

  37. Al-Janabi A, Malayeri MR. Innovative non-metal heat transfer surfaces to mitigate crystallization fouling. Int J Therm Sci. 2019;138:384–92. https://doi.org/10.1016/j.ijthermalsci.2019.01.003.

    Article  CAS  Google Scholar 

  38. Pop E, Varshney V, Roy AK. Thermal properties of graphene: fundamentals and applications. MRS Bull. 2012;37(12):1273–81.

    Article  CAS  Google Scholar 

  39. Jung H, Yu S, Bae N-S, Cho SM, Kim RH, Cho SH, et al. High through-plane thermal conduction of graphene nanoflake filled polymer composites melt-processed in an L-shape kinked tube. ACS Appl Mater Interfaces. 2015;7(28):15256–62.

    Article  CAS  Google Scholar 

  40. Yang L, Ji W, Mao M, Huang J. Dynamic stability, sedimentation, and time-dependent heat transfer characteristics of TiO2 and CNT nanofluids. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09103-w.

    Article  Google Scholar 

  41. Woo YC, Kim Y, Shim W-G, Tijing LD, Yao M, Nghiem LD, et al. Graphene/PVDF flat-sheet membrane for the treatment of RO brine from coal seam gas produced water by air gap membrane distillation. J Membr Sci. 2016;513:74–84.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the contribution of University of Malaya Research Grant RU019D-2017, GPF050A-2018, FRGS FP143-2019A and UAE University Grant (AUA Grant 31R168). The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups programme under grant number (G.R.P-119- 41).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. S. Oon or S. N. Kazi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oon, C.S., Kazi, S.N., Zubir, N. et al. Fouling and fouling mitigation of mineral salt using bio-based functionalized graphene nano-plates. J Therm Anal Calorim 146, 265–275 (2021). https://doi.org/10.1007/s10973-020-09940-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09940-0

Keywords

Navigation