Skip to main content
Log in

SADI approach programming on GPU: convective heat transfer of nanofluids flow inside a wavy channel

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the numerical simulation of convective heat transfer of nanofluids (Al2O3/water and CuO/water) inside a sinusoidal wavy channel is performed using the Graphics Processing Units (GPU). The governing equations including stream-function, vorticity transport, and energy are discretized using the fourth-order Spline Alternating-Direction Implicit (SADI) approach in combination with the curvilinear coordinates mapping. The final tridiagonal-matrices are solved by Parallel-Thomas-Algorithm (PTA) on GPU. A homogenous one-phase model is also applied to consider the effective characteristics of the nanofluids flow. In the first part of the results section, the effects of nanoparticle volume fraction, Reynolds number, and amplitude of the wavy wall on average Nusselt number and the skin friction coefficient of the channel are investigated. In the second part of the results section, the ability of GPU to accelerate the computation (or runtimes) is compared to the classic Thomas algorithm that runs on a Central Processing Unit (CPU). The results demonstrate that the speedup of PTA against CPU runtime for the finest grid is around 18.32×.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

\(\bar{a}\) :

Amplitude of wavy surface (m)

\(c_{\text{p}}\) :

Specific heat (J kg−1 K−1)

\(c_{\text{f}}\) :

Skin-friction coefficient

d :

Diameter (m)

h :

Heat transfer coefficient (W m−2 K−1)

k :

Thermal conductivity (W m−1 K−1)

\(\bar{H}\) :

Half width of channel (m)

Nu:

Nusselt number

Pr:

Prandtl number

Re:

Reynolds number

\(\bar{S}\) :

Surface geometry function

t :

Time (s)

\(\bar{T}\) :

Temperature (K)

\(\bar{u},\bar{v}\) :

Velocities components (m s−1)

\(\bar{U}_{\text{m}}\) :

Average velocity (m s−1)

\(\bar{x},\bar{y}\) :

Cartesian coordinates (m)

\(\beta\) :

Volumetric thermal expansion coefficient (K−1)

\(\theta\) :

Dimensionless temperature

\(\mu\) :

Dynamic viscosity (Ns m−2)

\(\xi ,\eta\) :

Body-fitted coordinates

\(\rho\) :

Density (kg m−3)

\(\tau\) :

Dimensionless time

\(\varphi\) :

Volume fraction of particles (%)

\(\bar{\psi }\) :

Stream function (m2 s−1)

\(\psi\) :

Dimensionless stream function

\(\omega\) :

Dimensionless vorticity

\(\bar{\omega }\) :

Vorticity (s−1)

−:

Dimensional quantity

′:

Derivative with respect to x

\({\text{x}}\) :

Local value

\({\text{f}}\) :

End point of wavy wall

\({\text{m}}\) :

Mean value

\({\text{s}}\) :

Starting point of corrugated wall

\({\text{w}}\) :

Surface conditions

\({\text{f}}\) :

Base fluid

nf:

Nanofluid

p:

Particles

in:

Inlet

References

  1. Eren M, Caliskan S. Effect of grooved pin-fins in a rectangular channel on heat transfer augmentation and friction factor using Taguchi method. Int J Heat Mass Transf. 2016;102:1108–22.

    Article  CAS  Google Scholar 

  2. Jing D, Pan Y. Electroviscous effect and convective heat transfer of pressure-driven flow through microtubes with surface charge-dependent slip. Int J Heat Mass Transf. 2016;101:648–55.

    Article  CAS  Google Scholar 

  3. Lim KY, Hung YM, Tan BT. Performance evaluation of twisted-tape insert induced swirl flow in laminar thermally developing heat exchanger. Appl Therm Eng. 2017;121:652–61.

    Article  Google Scholar 

  4. Sheikholeslami M, Rokni HB. Nanofluid two phase model analysis in existence of induced magnetic field. Int J Heat Mass Transf. 2017;107:288–99.

    Article  CAS  Google Scholar 

  5. Mahian O, Kolsi L, Amani M, Estelle P, Ahmadi G, Kleinstreuer C, Marshall J, Siavashi M, Taylor R, Niazmand H, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-part I: fundamentals and theory. Phys Rep. 2018. https://doi.org/10.1016/j.physrep.2018.11.004.

    Article  Google Scholar 

  6. Mahian O, Kolsi L, Amani M, Estelle P, Ahmadi G, Kleinstreuer C, Marshall J, Taylor R, Abu-Nada E, Rashidi S, Niazmand H, Wongwises S, Hayat T, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-part II: applications. Phys Rep. 2018. https://doi.org/10.1016/j.physrep.2018.11.003.

    Article  Google Scholar 

  7. Ahmed MA, Shuaib NH, Yusoff MZ. Numerical investigations on the heat transfer enhancement in a wavy channel using nanofluid. Int J Heat Mass Transf. 2012;55(21–22):5891–8.

    Article  CAS  Google Scholar 

  8. Ahmed HE, Yusoff MZ, Hawlader MNA, Ahmed MI, Salman BH, Kerbeet AS. Turbulent heat transfer and nanofluid flow in triangular duct with vortex generators. Int J Heat Mass Transf. 2017;105:495–504.

    Article  CAS  Google Scholar 

  9. Nazari S, Toghraie D. Numerical simulation of heat transfer and fluid flow of water–CuO Nanofluid in a sinusoidal channel with a porous medium. Physica E. 2017;87:134–40.

    Article  CAS  Google Scholar 

  10. Tang W, Hatami M, Zhou J, Jing D. Natural convection heat transfer in a nanofluid-filled cavity with double sinusoidal wavy walls of various phase deviation. Int J Heat Mass Transf. 2017;115:430–40.

    Article  CAS  Google Scholar 

  11. Al-Rashed AA, Aich W, Kolsi L, Mahian O, Hussein AK, Borjini MN. Effects of movable-baffle on heat transfer and entropy generation in a cavity saturated by CNT suspensions: three-dimensional modeling. Entropy. 2017;19(5):200.

    Article  CAS  Google Scholar 

  12. Al-Rashed AA, Kalidasan K, Kolsi L, Borjini MN, Kanna PR. Three-dimensional natural convection of CNT-water nanofluid confined in an inclined enclosure with Ahmed body. J Therm Sci Technol. 2017;12(1):JTST0002.

    Article  CAS  Google Scholar 

  13. Rahimi A, Kasaeipoor A, Malekshah EH, Palizian M, Kolsi L. Lattice Boltzmann numerical method for natural convection and entropy generation in cavity with refrigerant rigid body filled with DWCNTs-water nanofluid-experimental thermo-physical properties. Therm Sci Eng Prog. 2018;5:372–87.

    Article  Google Scholar 

  14. Ajeel RK, Salim WI, Hasann K. Thermal and hydraulic characteristics of turbulent nanofluids flow in trapezoidal-corrugated channel symmetry and zigzag shaped. Case Stud Therm Eng. 2018;12:620–35.

    Article  Google Scholar 

  15. Mosayebidorcheh S, Hatami M. Analytical investigation of peristaltic nanofluid flow and heat transfer in an asymmetric wavy wall channel (Part I: Straight channel). Int J Heat Mass Transf. 2018;126:790–9.

    Article  CAS  Google Scholar 

  16. Mosayebidorcheh S, Hatami M. Analytical investigation of peristaltic nanofluid flow and heat transfer in an asymmetric wavy wall channel (Part II: Divergent channel). Int J Heat Mass Transf. 2018;126:800–8.

    Article  CAS  Google Scholar 

  17. Ashorynejad HR, Zarghami A. Magnetohydrodynamics flow and heat transfer of Cu–water nanofluid through a partially porous wavy channel. Int J Heat Mass Transf. 2018;119:247–58.

    Article  CAS  Google Scholar 

  18. Ahmed SE, Mansour MA, Hussein AK, Mallikarjuna B, Almeshaal MA, Kolsi L. MHD mixed convection in an inclined cavity containing adiabatic obstacle and filled with Cu–water nanofluid in the presence of the heat generation and partial slip. J Therm Anal Calorim. 2019;138(2):1443–60.

    Article  CAS  Google Scholar 

  19. Pati S, Mehta SK, Borah A. Numerical investigation of thermo-hydraulic transport characteristics in wavy channels: comparison between raccoon and serpentine channels. Int Commun Heat Mass Transf. 2017;88:171–6.

    Article  Google Scholar 

  20. Wang W, Zhang Y, Li B, Han H, Gao X. Influence of geometrical parameters on turbulent flow and heat transfer characteristics in outward helically corrugated tubes. Energy Convers Manag. 2017;136:294–306.

    Article  Google Scholar 

  21. Jin ZJ, Chen FQ, Gao ZX, Gao XF, Qian JY. Effects of pith and corrugation depth on heat transfer characteristics in six-start spirally corrugated tube. Int J Heat Mass Transf. 2017;108:1011–25.

    Article  Google Scholar 

  22. Li Z, Gao Y. Numerical study of turbulent flow and heat transfer in cross-corrugated triangular ducts with delta shaped baffles. Int J Heat Mass Transf. 2017;108:658–70.

    Article  Google Scholar 

  23. Zhang D, Tao H, Xu Y, Sun Z. Numerical investigation on flow and heat transfer characteristics of corrugated tubes with non-uniform corrugation in turbulent flow. Chin J Chem Eng. 2017;26(3):437–44.

    Article  CAS  Google Scholar 

  24. Lin L, Zhao J, Lu G, Wang XD, Yan WM. Heat transfer enhancement in microchannel heat sink by wavy channel with changing wavelength/amplitude. Int J Therm Sci. 2017;118:423–34.

    Article  Google Scholar 

  25. Saikia A, Dalal A, Pati S. Thermo-hydraulic transport characteristics of non-Newtonian fluid flows through corrugated channels. Int J Therm Sci. 2018;129:201–8.

    Article  Google Scholar 

  26. Harikrishnan S, Tiwari S. Effect of skewness on flow and heat transfer characteristics of a wavy channel. Int J Heat Mass Transf. 2018;120:956–69.

    Article  Google Scholar 

  27. Choi SUS, Estman JA. Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publications-Fed. 1995;231:99–106.

    CAS  Google Scholar 

  28. Lee S, Choi SS, Li SA, Estman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf. 1999;121(2):280–9.

    Article  CAS  Google Scholar 

  29. Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 2000;21(1):58–64.

    Article  CAS  Google Scholar 

  30. Baheta AT, Woldeyohannes AD. Effect of particle size on effective thermal conductivity of nanofluids. Asian J Sci Res. 2013;6(2):339–45.

    Article  CAS  Google Scholar 

  31. Iacobazzi F, Milanese M, Colangelo G, Lomascolo M, de Risi A. An explanation of the Al2O3 nanofluid thermal conductivity based on the phonon theory of liquid. Energy. 2016;116:786–94.

    Article  CAS  Google Scholar 

  32. Almeshaal MA, Kalidasan K, Askri F, Velkennedy R, Alsagri AS, Kolsi L. Three-dimensional analysis on natural convection inside a T-shaped cavity with water-based CNT-aluminum oxide hybrid nanofluid. J Therm Anal Calorim. 2020;139(3):2089–98.

    Article  CAS  Google Scholar 

  33. Ferziger JH, Peric M. Computational methods for fluid dynamics. Berlin: Springer; 2012.

    Google Scholar 

  34. Rubin SG, Graves RA Jr. A cubic spline approximation for problems in fluid mechanics. Washington, DC: Langley Research Center National Aeronautics and Space Administration; 1975.

    Google Scholar 

  35. Wang P, Kahawita R. Numerical integration of partial differential equations using cubic splines. Int J Comput Math. 1983;13(3–4):271–86.

    Article  Google Scholar 

  36. Schoenberg IJ. Contributions to the problem of approximation of equidistant data by analytic function Part B On the problem of osculatory interpolation A second class of analytic approximation formulae. Quart Appl Math. 1946;4(2):112–41.

    Article  Google Scholar 

  37. MacLaren DH. Formulas for fitting a spline curve through a set of points. Boeing Appl Math Rpt 1958;2.

  38. Schoenberg IJ. Spline function, convex curves and mechanical quadrature. Bull Am Math Soc. 1958;64(6):352–7.

    Article  Google Scholar 

  39. Rubin SG, Khosla PK. Higher-order numerical solutions using cubic splines. AIAA J. 1976;14(7):851–8.

    Article  Google Scholar 

  40. Sastry SS. Finite difference approximations to one-dimensional parabolic equations using a cubic spline technique. J Comput Appl Math. 1976;2(1):23–6.

    Article  Google Scholar 

  41. Ahlberg JH, Nilson EN, Walsh JL. The theory of splines and their application. In: Mathematics in science and engineering. Academic Press, New York, 1967.

  42. Bickley WG. Piecewise cubic interpolation and two-point boundary problems. Comput J. 1968;11(2):206–8.

    Article  Google Scholar 

  43. Chawla TC, Leaf G, Chen WL, Grolmes MA. The application of the collocation method using Hermite cubic splines to nonlinear transient one-dimensional heat conduction problems. J Heat Transf. 1975;97(4):562–9.

    Article  Google Scholar 

  44. Wang CC. Transient force and free convection along a vertical wavy surface in micropolar fluids. Int J Heat Mass Transf. 2001;44(17):3241–51.

    Article  Google Scholar 

  45. Wang CC, Chen CK. Forced convection in a wavy-wall channel. Int J Heat Mass Transf. 2002;45(12):2587–95.

    Article  Google Scholar 

  46. Cheng CY. Soret and Dufour effects on free convection boundary layers of non-Newtonian power-law fluids with yield stress in porous media over a vertical plate with variable wall heat and mass fluxes. Int Commun Heat Mass Transf. 2011;38(5):615–9.

    Article  Google Scholar 

  47. Wang CC, Huang JH, Yang DJ. Cubic spline difference method for heat conduction. Int Commun Heat Mass Transf. 2012;39(2):224–30.

    Article  CAS  Google Scholar 

  48. Weller HG, Tabor G, Jasak H, Fureby C. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput Phys. 1998;12(6):620–31.

    Article  Google Scholar 

  49. Logg A, Mardal KA, Wells GN. Finite element assembly. In: Automated solution of differential equations by the finite element method, 1st edn. Springer, Berlin, 2012.

  50. Witherden FD, Farrington AM, Vincent PE. PyFR: an open source framework for solving advection-diffusion type problems on streaming architectures using the flux reconstruction approach. Comput Phys Commun. 2014;185(11):3028–40.

    Article  CAS  Google Scholar 

  51. Owens JD, Houston M, Luebke D, Green S, Stone JE, Phillips JC. GPU computing. Proc IEEE. 2008;96(5):879–99.

    Article  Google Scholar 

  52. Sanders J, Kandrot E. CUDA by example: an introduction to general-purpose GPU programming. Boston: Addison-Wesley Professional; 2010.

    Google Scholar 

  53. Wu W. Computational river dynamics. Boca Raton: CRC Press; 2007.

    Book  Google Scholar 

  54. NVIDIA, NVIDIA CUDA C Programming Guide version 8.0, 2017.

  55. Egloff, D. High-performance finite difference PDE solvers on GPUs. Institution: technical report. QuantAlea GmbH, Zurich. February 2010. https://hgpu.org/?p=5918.

  56. Davidson A, Zhang Y, Owens JD. An auto-tuned method for solving large tridiagonal systems on the GPU. In: Parallel and distributed processing symposium (IPDPS) IEEE international. 2011; p. 956–65.

  57. Frezzotti A, Ghiroldi GP, Gibelli L. Solving the Boltzmann equation on GPUs. Comput Phys Commun. 2011;182(12):2445–53.

    Article  CAS  Google Scholar 

  58. Esfahanian V, Darian HM, Gohari SI. Assessment of WENO schemes for numerical simulation of some hyperbolic equations using GPU. Comput Fluids. 2013;80:260–8.

    Article  Google Scholar 

  59. Darian HM, Esfahanian V. Assessment of WENO schemes for multi-dimensional Euler equations using GPU. Int J Numer Methods Fluids. 2014;76(12):961–81.

    Article  Google Scholar 

  60. Ren Q, Chan CL. Natural convection with an array of solid obstacles in an enclosure by lattice Boltzmann method on a CUDA computation platform. Int J Heat Mass Transf. 2016;93:273–85.

    Article  Google Scholar 

  61. Darian HM. Accelerating high-order WENO schemes using two heterogeneous GPUs. J Comput Appl Mech. 2017;48(2):161–70.

    Google Scholar 

  62. Asensio IA, Laguna AA, Aissa MH, Poedts S, Ozak N, Lani A. A GPU-enabled implicit finite volume solver for the ideal two-fluid plasma model on unstructured grids. Comput Phys Commun. 2019;239:16–32.

    Article  CAS  Google Scholar 

  63. Shu S, Zhang J, Yang N. GPU-accelerated transient lattice Boltzmann simulation of bubble column reactors. Chem Eng Sci. 2020;214:115436.

    Article  CAS  Google Scholar 

  64. Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20(4):571.

    Article  CAS  Google Scholar 

  65. Koo J, Kleinstreuer C. A new thermal conductivity model for nanofluids. J Nanopart Res. 2004;6(6):577–88.

    Article  Google Scholar 

  66. Oztop HF, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int J Heat Fluid Flow. 2008;29(5):1326–36.

    Article  Google Scholar 

  67. Rezaee FK, Tayebi A. Exergy destruction of forced convective (Ethylene Glycol + Alumina) nanofluid through a duct with constant wall temperature in contrast to (Ethylene Glycol) fluid. J Appl Sci. 2010;10(13):1279–85.

    Article  CAS  Google Scholar 

  68. Lauriat G, Altimir I. A new formulation of the SADI method for the prediction of natural convection flows in cavities. Comput Fluids. 1985;13(2):141–55.

    Article  Google Scholar 

  69. Zhang Y, Cohen J, Owens JD. Fast tridiagonal solvers on the GPU. In: Proceedings of the 15th ACM SIGPLAN symposium on principles and practice of parallel programming. Bangalore, January 9–14, 2010; 45(5):127–36.

Download references

Acknowledgements

The authors would like to acknowledge the Shahrood University of Technology, which supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Akbarzadeh.

Ethics declarations

Conflict of interest

The authors wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghavi, S.M.H., Akbarzadeh, P. & Mahmoodi Darian, H. SADI approach programming on GPU: convective heat transfer of nanofluids flow inside a wavy channel. J Therm Anal Calorim 146, 31–46 (2021). https://doi.org/10.1007/s10973-020-09924-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09924-0

Keywords

Navigation