Skip to main content
Log in

Darcy–Boussinesq convective flow in a trapezoidal enclosure with thermal stratification

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

We explore numerically the Darcy–Boussinesq convective flow of water, kerosene, and engine oil through the glass ball, aluminum foam and sandstone porous medium inside a right-angle trapezoidal enclosure taking into consideration of thermal stratification. The bottom and left walls of the enclosure are uniformly heated, whereas thermal insulation is considered for the upper wall of it. Thermal stratification is applied to the right wall. The governing nondimensional partial differential equations are simulated using the Galerkin weighted residual finite element method with the help of COMSOL Multiphysics. We explored the time evolution of solutions and investigate the effects of the Rayleigh number, thermal stratification parameter, porosity parameter, types of the solid matrix and working fluids, and on the average Nusselt numbers, streamlines and isotherms. The simulated results confirm that the heat transfer rate amplifies with the increase in Rayleigh number and diminishes with the thermal stratification, porosity and aspect ratio of the enclosure. The results further guarantee that engine oil and aluminum foam perform better for heat transfer intensification. A two-cell flow is obtained for a stronger thermal stratification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

A :

Aspect ratio (–)

\(b\) :

Thermal stratification parameter (–)

\(B\) :

Thermal gradient (K m−1)

\(C_{\text{p}}\) :

Specific heat (J kg−1 K−1)

\(g\) :

Gravitational acceleration (ms−2)

\({\text{Gr}}\) :

Grashof number (–)

\(k_{\text{f}}\) :

Thermal conductivity of fluid (W m−1 K−1)

\(k_{\text{m}}\) :

Effective thermal conductivity (W m−1 K−1)

\(k_{\text{s}}\) :

Thermal conductivity of solid (W m−1 K−1)

\(K\) :

Permeability (m2)

\(l\) :

Length of the upper wall (m)

\(L\) :

Length of the cavity (m)

\({\text{Nu}}_{\text{ave}}\) :

Average Nusselt number (–)

\({\text{Nu}}_{\text{L}}\) :

Local Nusselt number (–)

\(p\) :

Dimensional pressure (Pa)

\(P\) :

Nondimensional pressure (–)

\(\Pr\) :

Prandtl number (–)

\(q_{\text{w}}\) :

Heat flux (W m−2)

\({\text{Ra}}\) :

Rayleigh number (–)

\(t\) :

Time (s)

\(T\) :

Temperature (K)

\(T_{\text{c}}\) :

Temperature of the inclined wall (K)

\(T_{\text{h}}\) :

Temperature of the hot wall (K)

\(T_{0}\) :

Temperature of the cold wall (K)

\(u\), \(v\) :

Dimensional velocity components (ms−1)

\(U\), \(V\) :

Nondimensional velocity components (–)

\(x\), \(y\) :

Cartesian coordinates (m)

\(X\), \(Y\) :

Nondimensional Cartesian coordinates (–)

\(\alpha\) :

Thermal diffusivity (m2 s−1)

\(\beta\) :

Coefficient of thermal expansion (K−1)

\(\rho\) :

Density (kg m−3)

\(\varepsilon\) :

Porosity (–)

\(\mu\) :

Viscosity (Pa s)

\(\gamma\) :

Thermal conductivity ratio (–)

\(\lambda\) :

Thermal diffusivity ratio (–)

\(\psi\) :

Stream function (m2 s−1)

\(\theta\) :

Nondimensional temperature (–)

\(\tau\) :

Dimensionless time (–)

c:

Cold

h:

Hot

f:

Fluid

m:

Effective

p:

Particle

s:

Solid

ave:

Average

References

  1. Ingham DB, Pop I. Transport phenomena in porous media. Oxford: Pergamon; 1998.

    Google Scholar 

  2. Ingham DB, Pop I. Transport phenomena in porous media, vol. II. Oxford: Pergamon; 2002.

    Google Scholar 

  3. Ingham DB, Pop I. Transport phenomena in porous media, vol. III. Oxford: Elsevier; 2005.

    Google Scholar 

  4. Pop I, Ingham DB. Convective heat transfer: mathematical and computational modeling of viscous fluids and porous media. Oxford: Pergamon; 2001.

    Google Scholar 

  5. Vafai K. Handbook of porous media. 2nd ed. New York: Taylor and Francis Group; 2005.

    Book  Google Scholar 

  6. Vafai K. Porous media: applications in biological systems and biotechnology. Tokyo: CRC Press; 2010.

    Book  Google Scholar 

  7. Vadasz P. Emerging topics in heat and mass transfer in porous media. New York: Springer; 2008.

    Book  Google Scholar 

  8. Nield DA, Bejan A. Convection in porous media. 4th ed. New York: Springer; 2013.

    Book  Google Scholar 

  9. Bear J. Modeling phenomena of flow and transport in porous media. New York: Springer; 2018.

    Book  Google Scholar 

  10. Khanafer K, Vafai K. Applications of nanofluids in porous medium. J Therm Anal Calorim. 2019;135:1479–92.

    Article  CAS  Google Scholar 

  11. Cheng P, Minkowycz WJ. Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike. J Geophys Res. 1977;82:2040–4.

    Article  Google Scholar 

  12. Tiwari K, Singh P. Natural convection in a thermally stratified fluid saturated porous medium. Int J Eng Sci. 1992;30:1003–7.

    Article  Google Scholar 

  13. Kumar BR, Singh P, Bansod VJ. Effect of thermal stratification on double-diffusive natural convection in a vertical porous enclosure. Numer Heat Transf A Appl. 2002;41:421–47.

    Article  Google Scholar 

  14. Bejan A. Convection heat transfer. Hoboken: Wiley; 2013.

    Book  Google Scholar 

  15. Srinivasacharya D, Reddy GS. Effect of double stratification on free convection in a power-law fluid saturated porous medium. Fluid Dyn Mater Process. 2013;9:291–305.

    Google Scholar 

  16. Prasad V, Kulacki FA. Convective heat transfer in a rectangular porous cavity-effect of aspect ratio on flow structure and heat transfer. J Heat Transf. 1984;106:158–65.

    Article  Google Scholar 

  17. Goyeau B, Songbe JP, Gobin D. Numerical study of double-diffusive natural convection in a porous cavity using the Darcy–Brinkman formulation. Int J Heat Mass Transf. 1996;39:1363–78.

    Article  Google Scholar 

  18. Baytas AC, Pop I. Free convection in oblique enclosures filled with a porous medium. Int J Heat Mass Transf. 1999;42:1047–57.

    Article  CAS  Google Scholar 

  19. Saeid N, Pop I. Natural convection from a discrete heater in a square cavity filled with a porous medium. J Porous Media. 2005;8:53–63.

    Article  Google Scholar 

  20. Varol Y, Oztop HF, Pop I. Natural convection in right-angle porous trapezoidal enclosure partially cooled from inclined wall. Int Commun Heat Mass Transf. 2009;36:6–15.

    Article  CAS  Google Scholar 

  21. Varol Y, Oztop HF, Pop I. Entropy analysis due to conjugate-buoyant flow in a right- angle trapezoidal enclosure filled with a porous medium bounded by a solid vertical wall. Int J Thermal Sci. 2009;48:1161–75.

    Article  Google Scholar 

  22. Varol Y, Oztop HF, Pop I. Maximum density effects on buoyancy-driven convection in a porous trapezoidal cavity. Int Commun Heat Mass Transf. 2010;37:401–9.

    Article  Google Scholar 

  23. Fontana E, da Silva A, Marcondes F. Natural convection within trapezoidal enclosure with two baffles: effect of various angle of inclination. In: 21st Brazilian congress of mechanical engineering, October 24–28, 2011, Natal, Brazil. Proceedings of COBEM 2011.

  24. Saleh H, Roslan R, Hashim I. Natural convection in a porous trapezoidal enclosure with an inclined magnetic field. Comput Fluids. 2011;47:155–64.

    Article  Google Scholar 

  25. Uddin MB, Rahman MM, Khan MAH, Ibrahim TA. Effect of buoyancy ratio on unsteady thermosolutal combined convection in a lid driven trapezoidal enclosure in the presence of magnetic field. Comp Fluids. 2015;114:284–96.

    Article  Google Scholar 

  26. Uddin MB, Rahman MM, Khan MAH, Saidur R, Ibrahim TA. Hydromagnetic double-diffusive mixed convection, in trapezoidal enclosure due to uniform and nonuniform heating at the bottom side: effect of Lewis number. Alex Eng J. 2016;55:1165–76.

    Article  Google Scholar 

  27. Sheremet MA, Groşan T, Pop I. Steady-state free convection in right-angle porous trapezoidal cavity filled by a nanofluid: Buongiorno’s mathematical model. Eur J Mech-B/Fluids. 2015;53:241–50.

    Article  Google Scholar 

  28. Bondareva NS, Sheremet MA, Pop I. Magnetic field effect on the unsteady natural convection in a right-angle trapezoidal cavity filled with a nanofluid. Int J Numer Methods Heat Fluid Flow. 2015;25:1924–46.

    Article  Google Scholar 

  29. Eshon SM, Mustafa R, Hasan MN. Natural convection inside a porous trapezoidal enclosure with wavy top surface. AIP Conf Proc. 2016;1754:040023.

    Article  Google Scholar 

  30. Al-Weheibi SM, Rahman MM, Saghir MZ. Impacts of variable porosity and variable permeability on the thermal augmentation of Cu–H2O nanofluid-drenched porous trapezoidal enclosure considering thermal nonequilibrium model. Arab J Sci Eng. 2020;45:1237–51.

    Article  CAS  Google Scholar 

  31. Al-Rashed AAA, Sheikhzadeh GA, Aghaei A, Monfared F, Shahsavar A, Afrand M. Effect of a porous medium on flow and mixed convection heat transfer of nanofluids with variable properties in a trapezoidal enclosure. J Therm Anal Calorim. 2020;139:741–54.

    Article  CAS  Google Scholar 

  32. Zienkiewicz OC, Taylor RL. The finite element method: solid and fluid mechanics: dynamics and non-linearity, vol. II. Oxford: McGraw-Hill; 1991.

    Google Scholar 

  33. Uddin MJ, Rahman MM. Finite element computational procedure for convective flow of nanofluids in an annulus. Thermal Sci Eng Prog. 2018;6:251–67.

    Article  Google Scholar 

  34. Sheremet MA, Dinarvand S, Pop I. Effect of thermal stratification on free convection in a square porous cavity filled with a nanofluid using Tiwari and Das nanofluid model. Phys E. 2015;69:332–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work of M.M. Rahman was supported by the Sultan Qaboos University through the grants IG/SCI/DOMS/18/10 and IG/SCI/MATH/20/03, while the work of I. Pop has been supported from the Grant PN-III-P4-ID-PCE-2016-0036, UEFISCDI, Romania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioan Pop.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.M., Al Amri, K.A. & Pop, I. Darcy–Boussinesq convective flow in a trapezoidal enclosure with thermal stratification. J Therm Anal Calorim 145, 3325–3337 (2021). https://doi.org/10.1007/s10973-020-09912-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09912-4

Keywords

Navigation