Skip to main content
Log in

Application of rotating circular obstacles in improving ferrofluid heat transfer in an enclosure saturated with porous medium subjected to a magnetic field

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, the evaluation of the heat transfer rate and fluid flow in an enclosure with rotating circular obstacles has been studied. The enclosure is filled with a porous medium and subjected to the magnetic field. Fe3O4/water nanofluid has been used to simulate the effect of magnetism. The finite volume method has been applied to solve the equations. To velocity–pressure coupling, the SIMPLE algorithm has been applied. The influence of magnetism on the enclosure in the conductive and non-conductive boundaries along the magnetic field has been investigated. The streamlines and isotherm-lines contours in the conductive and non-conductive boundaries along the magnetic field, the dimensionless angular velocities of the circular obstacles, and their direction have been obtained. The results show that the different temperature cases of the circular obstacles and their direction play an essential role in the flow and heat transfer. The highest and lowest heat transfer rates occur in cold circular obstacles and hot circular obstacles, respectively. Also, the composition of the porous medium and the magnetic field show different behaviors at the heat transfer rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(\vec{b}_{0}\) :

Induced field (T)

\(B_{0}\) :

Magnitude of magnetic field (T)

\(C_{\text{p}}\) :

Specific heat capacity (J kg−1 K−1)

\(\vec{F}\) :

Lorentz force vector (N m−3)

\(q^{\prime\prime}\) :

Mean heat flux (W m−2)

\(q^{\prime\prime}\left( x \right)\) :

Local heat flux (W m−2)

Da:

Darcy number

g :

Gravity (m s−2)

Gr:

Grashof number

h :

Inter-phase heat transfer coefficient (W m−2 K−1)

H :

Dimensionless inter-phase heat transfer coefficient

\(h\left( y \right)\) :

Local heat transfer coefficient (W m−2 K−1)

Ha:

Hartmann number

J :

Current density (A m−2)

k :

Thermal conductivity (W m−1 K−1)

K :

Permeability (m2)

L :

Length of the enclosure (m)

Nuave :

Average Nusselt number

\({\text{Nu}}\left( y \right)\) :

Local Nusselt number

p :

Pressure (Pa)

Pr:

Prandtl number

R :

Radius of rotating circular obstacles (m)

Re:

Reynolds number

Ri:

Richardson number

T :

Temperature (K)

U :

Dimensionless velocity in the x-direction

u :

Velocity in the x-direction (m2 s−1)

V :

Dimensionless velocity in y-direction

v :

Velocity in y-direction (m2 s−1)

x :

Coordinate component in the x-direction

X :

Dimensionless coordinate component in the x-direction

Y :

Dimensionless coordinate component in the y-direction

y :

Coordinate component in the y-direction

\(\beta\) :

Thermal expansion coefficient (1/K)

\(\varGamma\) :

Dimensionless thermal diffusivity

\(\gamma\) :

Dimensionless thermal conductivity of porous medium

\(\varepsilon\) :

Porosity

\(\theta\) :

Dimensionless temperature

\(\vartheta\) :

Kinematic viscosity (m2 s−1)

\(\mu\) :

Dynamic viscosity (kg m−1 s−1)

\(\rho\) :

Density (kg m−3)

\(\sigma\) :

Electrical conductivity (S m−1)

\(\varphi\) :

Volume fraction

\(\psi\) :

Dimensionless stream function

\(\omega\) :

Angular velocity (rad s−1)

\(\varOmega\) :

Dimensionless angular velocity

\(\alpha\) :

Thermal diffusivity (m2 s−1)

ave:

Average

c :

Cold

f :

Fluid

h :

Hot

LTE:

Local thermal equilibrium

LTNE:

Local thermal non-equilibrium

MHD:

Magnetohydrodynamics

nf:

Nanofluid

p :

Particle

s :

Solid

References

  1. Selimefendigil F, Öztop HF, Chamkha AJ. Analysis of mixed convection of nanofluid in a 3D lid-driven trapezoidal enclosure with flexible side surfaces and inner cylinder. Int Commun Heat Mass Trans. 2017;87:40–51.

    Article  CAS  Google Scholar 

  2. Tian Z, Shahsavar A, Al-Rashed AAAA, Rostami S. Numerical simulation of nanofluid convective heat transfer in an oblique enclosure with conductive edges equipped with a constant temperature heat source: entropy production analysis. Comput Math Appl. 2019. https://doi.org/10.1016/j.camwa.2019.12.007.

    Article  Google Scholar 

  3. Khaleel Kareem A, Gao S. A comparison study of mixed convection heat transfer of turbulent nanofluid flow in a three-dimensional lid-driven enclosure with a clockwise versus an anticlockwise rotating cylinder. Int Commun Heat Mass Trans. 2018;90:44–55.

    Article  CAS  Google Scholar 

  4. Selimefendigil F, Öztop HF. Jet impingement cooling and optimization study for a partly curved isothermal surface with CuO–water nanofluid. Int Commun Heat Mass Trans. 2017;89:211–8.

    Article  CAS  Google Scholar 

  5. Biswas N, Manna NK, Datta P, Sinha Mahapatra P. Analysis of heat transfer and pumping power for bottom-heated porous enclosure saturated with Cu–water nanofluid. Powder Technol. 2018;326:356–69.

    Article  CAS  Google Scholar 

  6. Alsabery AI, Chamkha AJ, Hussain SH, Saleh H, Hashim I. Heatline visualization of natural convection in a trapezoidal enclosure partly filled with nanofluid porous layer and partly with non-Newtonian fluid layer. Adv Powder Technol. 2015;26:1230–44.

    Article  CAS  Google Scholar 

  7. Ismael Muneer A, Mansour MA, Chamkha Ali J, Rashad AM. Mixed convection in a nanofluid filled-enclosure with partial slip subjected to constant heat flux and inclined magnetic field. J Magn Magn Mater. 2016;15:25–36.

    Article  CAS  Google Scholar 

  8. Sivaraj C, Sheremet MA. MHD natural convection in an inclined square porous enclosure with a heat conducting solid block. J Magn Magn Mater. 2017;426:351–60.

    Article  CAS  Google Scholar 

  9. Selimefendigil F, Oztop HF, Chamkha AJ. MHD mixed convection in a nanofluid filled vertical lid-driven enclosure having a flexible fin attached to its upper wall. J Therm Anal Calorim. 2019;135:325–40.

    Article  CAS  Google Scholar 

  10. Selimefendigil F, Chamkha AJ. Magnetohydrodynamics mixed convection in a power law nanofluid-filled triangular enclosure with an opening using Tiwari and Das’ nanofluid model. J Therm Anal Calorim. 2019;135:419–36.

    Article  CAS  Google Scholar 

  11. Mikhailenko SA, Sheremet MA, Pop I. Convective heat transfer in a rotating nanofluid enclosure with sinusoidal temperature boundary condition. J Therm Anal Calorim. 2019;137:799–809.

    Article  CAS  Google Scholar 

  12. Jabbar Mohammed Y, Hamzah Hameed K, Ali Farooq H. Thermal analysis of nanofluid saturated in inclined porous enclosure cooled by rotating active cylinder subjected to convective condition. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09668-x.

    Article  Google Scholar 

  13. Hashemi-Tilehnoee M, Dogonchi AS, Seyyed Seyyed Masoud, Chamkha Ali J, Ganji DD. Magnetohydrodynamic natural convection and entropy generation analyses inside a nanofluid-filled incinerator-shaped porous enclosure with wavy heater block. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09220-6.

    Article  Google Scholar 

  14. Ghalambaz M, Sheremet MA, Mehryan SAM. Local thermal non-equilibrium analysis of conjugate free convection within a porous enclosure occupied with Ag–MgO hybrid nanofluid. J Therm Anal Calorim. 2019;135:1381–98.

    Article  CAS  Google Scholar 

  15. Sheremet Mikhail A, Roşca Natalia C, Roşca Alin V. I Pop, Mixed convection heat transfer in a square porous enclosure filled with a nanofluid with suction/injection effect. Comput Math Appl. 2018;76:2665–77.

    Article  Google Scholar 

  16. Vo DD, Hedayat M, Ambreen T, Shehzad SA, Sheikholeslami M, Shafee A, Khang Nguyen T. Effectiveness of various shapes of Al2O3 nanoparticles on the MHD convective heat transportation in porous medium. J Therm Anal Calorim. 2020;139:1345–53.

    Article  CAS  Google Scholar 

  17. Ganesh Kumar K, Lokesh HJ, Shehzad SA, Ambreen T. On analysis of Blasius and Rayleigh-Stokes hybrid nanofluid flow under aligned magnetic field. J Therm Anal Calorim. 2020;139:2119–27.

    Article  CAS  Google Scholar 

  18. Gul M, Abbasi FM, Shehzad SA, Shafee A. Entropy generation for peristaltic motion of Carreau’s fluid with mixture of ethylene glycol and boron-nitride nanoparticles. Phys Scripta. 2020;95:035212.

    Article  CAS  Google Scholar 

  19. Abbasi FM, Shanakhat I, Shehzad SA. Entropy generation analysis for peristalsis of nanofluid with temperature dependent viscosity and Hall effects. J Magn Magn Mater. 2019;474:434–41.

    Article  CAS  Google Scholar 

  20. Banisharif A, Aghajani M, Van Vaerenbergh S, Estellé P, Rashidi A. Thermophysical properties of water ethylene glycol (WEG) mixture-based Fe3O4 nanofluids at low concentration and temperature. J Mol Liq. 2020;302:112606.

    Article  CAS  Google Scholar 

  21. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-part I: fundamentals and theory. Phys Rep. 2019;790:1–48.

    Article  CAS  Google Scholar 

  22. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, Abu-Nada E, Rashidi S, Niazmand H, Wongwises S, Hayat T, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows—part II: application. Phys Rep. 2019;791:1–59.

    Article  CAS  Google Scholar 

  23. Rahimpour N. M Keshavarz Moraveji, Free convection of water–Fe3O4 nanofluid in an inclined enclosure subjected to a magnetic field: CFD modeling, sensitivity analysis. Adv Powder Technol. 2017;28:1573–84.

    Article  CAS  Google Scholar 

  24. Karbasifar B, Akbari M, Toghraie D, Mixed convection of water-aluminum oxide nanofluid in an inclined lid-driven cavity containing a hot elliptical centric cylinder. Int J Heat Mass Transf. 2018;11:1237–49.

    Article  CAS  Google Scholar 

  25. Orooji Y, Ghanbari M, Amiri O, Salavati-Niasari M, Facile fabrication of silver iodide/graphitic carbon nitride nanocomposites by notable photo-catalytic performance through sunlight and antimicrobial activity. J Hazard Mater. 2020;389:122079.

    Article  CAS  PubMed  Google Scholar 

  26. Ho CJ, Hsieh YJ, Rashidi S, Orooji Y, Yan WM, Thermal-hydraulic analysis for alumina/water nanofluid inside a mini-channel heat sink with latent heat cooling ceiling-An experimental study. Int Commun Heat Mass Transf. 2020;112:04477.

    Article  CAS  Google Scholar 

  27. Ghasemi M, Khataee A, Gholami P, Soltani RDC, Hassani A, Orooji Y, In-situ electro-generation and activation of hydrogen peroxide using a CuFeNLDH-CNTs modified graphite cathode for degradation of cefazolin. J Environ Manag. 2020;267:110629.

    Article  CAS  Google Scholar 

  28. Ghasemi K, Siavashi M. MHD nanofluid free convection and entropy generation in porous enclosures with different conductivity ratios. J Magn Magn Mater. 2017;442:474–90.

    Article  CAS  Google Scholar 

  29. Sisi AJ, Fathinia M, Khataee A, Orooji Y. Systematic activation of potassium peroxydisulfate with ZIF-8 via sono-assisted catalytic process: mechanism and ecotoxicological analysis. J Mol Liq. 2020;308:113018.

    Article  CAS  Google Scholar 

  30. Mehdizadeh P, Orooji Y, Amiri O, Salavati-Niasari M, Moayedi H. Green synthesis using cherry and orange juice and characterization of TbFeO3 ceramic nanostructures and their application as photocatalysts under UV light for removal of organic dyes in water. J Clean Prod. 2020;252:119765.

    Article  CAS  Google Scholar 

  31. Barnoon P, Toghraie D, Balali Dehkordi R, Abed H. MHD mixed convection and entropy generation in a lid-driven cavity with rotating cylinders filled by a nanofluid using two phase mixture model. J Magn Magn Mater. 2019;483:224–48.

    Article  CAS  Google Scholar 

  32. Yaghoubi Emami R, Siavashi M, Shahriari Moghaddam G. The effect of inclination angle and hot wall configuration on Cu–water nanofluid natural convection inside a porous square enclosure. Adv Powder Technol. 2018;29:519–36.

    Article  CAS  Google Scholar 

  33. Barnoon P, Toghraie D, Eslami F, Mehmandoust B. Entropy generation analysis of different nanofluid flows in the space between two concentric horizontal pipes in the presence of magnetic field: single-phase and two-phase approaches. Comput Math Appl. 2019;77:662–92.

    Article  Google Scholar 

  34. Mehmood Z. Numerical simulations and linear stability analysis of mixed thermomagnetic convection through two lid-driven entrapped trapezoidal cavities enclosing ferrofluid saturated porous medium. Int Commun Heat Mass Trans. 2019;109:104345.

    Article  CAS  Google Scholar 

  35. Barnoon P, Toghraie D. Numerical investigation of laminar flow and heat transfer of non-Newtonian nanofluid within a porous medium. Powder Technol. 2018;325:78–91.

    Article  CAS  Google Scholar 

  36. Chen YY, Li BW, Zhang JK. Spectral collocation method for natural convection in a square porous cavity with local thermal equilibrium and non-equilibrium models. Int J Heat Mass Trans. 2016;96:84–96.

    Article  Google Scholar 

  37. Li Z, Barnoon P, Toghraie D, Balali Dehkordi R, Afrand M. Mixed convection of non-Newtonian nanofluid in an H-shaped cavity with cooler and heater cylinders filled by a porous material: two phase approach. Adv Powder Technol. 2019;30:2666–85.

    Article  CAS  Google Scholar 

  38. Barnoon P, Toghraie D, Balali Dehkordi R, Afrand M. Two phase natural convection and thermal radiation of Non-Newtonian nanofluid in a porous cavity considering inclined cavity and size of inside cylinders. Int Commun Heat Mass Trans. 2019;108:104285.

    Article  CAS  Google Scholar 

  39. Barnoon P, Toghraie D, Rostami S. Optimization of heating-cooling generators with porous components/cryogenic conductors on natural convection in a porous enclosure: using different two-phase models and single-phase model and using different designs. Int Commun Heat Mass Trans. 2020;111:104472.

    Article  CAS  Google Scholar 

  40. Rostami S, Toghraie D, Shabani B, Sina N, Barnoon P. Measurement of the thermal conductivity of MWCNT-CuO/water hybrid nanofluid using artificial neural networks (ANNs). J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09458-5.

    Article  Google Scholar 

  41. Astanina MS, Sheremet MA, Oztop HF, Abu-Hamdeh N. MHD natural convection and entropy generation of ferrofluid in an open trapezoidal cavity partially filled with a porous medium. Int J Mech Sci. 2018;136:493–502.

    Article  Google Scholar 

  42. Ghasemi B, Aminossadati SM, Raisi A. Magnetic field influence on natural convection in a nanofluid-filled square enclosure. Int J Therm Sci. 2011;50:1748–56.

    Article  CAS  Google Scholar 

  43. Nithiarasu P, Seetharamu KN, Sundararajan T. Natural convective heat transfer in a fluid saturated variable porosity medium. Int J Heat Man Trans. 1997;40(16):3955–67.

    Article  CAS  Google Scholar 

  44. Ho CJ, Liu WK, Lin CC. Natural convection heat transfer of alumina-water nanofluid invertical square enclosures: an experimental study. Int J Therm Sci. 2010;49:1345–53.

    Article  CAS  Google Scholar 

  45. Motlagh SY, Soltanipour H. Natural convection of Al2O3–water nanofluid in an inclined enclosure using Buongiorno’s two-phase model. Int J Therm Sci. 2017;111:310–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Karimipour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barnoon, P., Toghraie, D. & Karimipour, A. Application of rotating circular obstacles in improving ferrofluid heat transfer in an enclosure saturated with porous medium subjected to a magnetic field. J Therm Anal Calorim 145, 3301–3323 (2021). https://doi.org/10.1007/s10973-020-09896-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09896-1

Keywords

Navigation