Skip to main content
Log in

Computational study on the effects of variable viscosity of micropolar liquids on heat transfer in a channel

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A numerical model is developed to study the effects of temperature-dependent viscosity on heat transfer in magnetohydrodynamic flow of micropolar fluid in a channel with stretching walls. The governing equations for linear and angular momenta and energy are transformed to a set of nonlinear ordinary differential equations by using similarity variables, and resulting problems are solved numerically by quasi-linearization. The effects of the various physical parameters on velocity, microrotation and temperature profiles are presented graphically and numerically. Finally, the effects of pertinent parameters on local skin-friction coefficient and local Nusselt number are also presented graphically. Some important observations regarding the effect of vortex viscosity parameter, microinertia density parameter, spin gradient viscosity parameter and couple stress on flow fields are noted and displayed. Numerical values of shear stress, couple stress and heat flux are computed and tabulated. The viscosity variation parameter enhances the shear stress and the couple stress. However, the heat transfer exhibits an opposite trend. The viscosity parameter is the most influential on thermal distribution. The magnetic field acts as a retarding force which reduces the normal and streamwise velocities as well as the microrotation distribution

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\(\mu _{0}\) :

Characteristic viscosity (kg m−1 s−1)

\(\sigma\) :

Electric conductivity (s m−1)

\(\rho\) :

Fluid density (kg m−3)

p :

Fluid pressure (kg m−1 s−2)

\(T_{\mathrm{f}}\) :

Fluid temperature (K)

\(q_{\mathrm{w}}\) :

Heat flux (kg s−3)

\(\nu\) :

Kinematic viscosity (m2 s−1)

\(B_0\) :

Magnetic field intensity (m−1 A)

j :

Microinertia per unit mass (m2)

\(\phi\) :

Microrotation component (s−1)

K :

Porous permeability (m2)

T 1, T 2 :

Reference fluid temperatures (K)

\(\tau _{\mathrm{w}}\) :

Shear stress (kg m−1 s−2)

\({\mathrm{c}}_{\mathrm{p}}\) :

Specific heat (J kg−1 K−1)

b :

Stretching rate (m)

\(k_0\) :

Thermal conductivity (W m−1 K−1)

\(\kappa\) :

Vortex viscosity (Pa s)

2c :

Width of channel (m)

u, v :

x and y component of velocity (m s−1)

\(C_{\mathrm{g}}\) :

Couple stress coefficient

Ec:

Eckert number

M :

Magnetic field parameter

g :

Microrotation

f :

Normal velocity

\(f'\) :

Stream velocity,

\(\theta\) :

Temperature

Nu:

Nusselt number

\(N_2\) :

Parameter for microinertia density

\(N_3\) :

Parameter for skin gradient viscosity

\(N_1\) :

Parameter for vortex viscosity

Pr:

Prandtl number,

Re:

Reynolds number

\(\eta\) :

Similarity variable

\(C_{\mathrm{f}}\) :

Skin friction coefficient

\(\gamma\) :

Spin gradient viscosity

\(\mu \left( T_{\mathrm{f}}\right)\) :

Temperature-dependent viscosity

δ :

Viscosity variation constant

\(\epsilon\) :

Viscosity variation parameter

References

  1. Sheikholeslami M. New computational approach for energy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;1(344):319–33.

    Article  Google Scholar 

  2. Sheikholeslami M, Rezaeianjouybari B, Darzi M, Shafee A, Li Z, Nguyen TK. Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int J Heat Mass Transf. 2019;1(141):974–80.

    Article  Google Scholar 

  3. Sheikholeslami M, Rizwan-ul H, Ahmad S, Zhixiong L, Elaraki YG, Tlili I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf. 2019;1(135):470–8.

    Article  Google Scholar 

  4. Sheikholeslami M, Ghasemi A. Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM. Int J Heat Mass Transf. 2018;123:418–31.

    Article  CAS  Google Scholar 

  5. Sheikholeslami M, Seyednezhad M. Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. Int J Heat Mass Transf. 2018;120:772–81.

    Article  CAS  Google Scholar 

  6. Sheikholeslami M, Rashidi MM. Ferrofluid heat transfer treatment in the presence of variable magnetic field. Eur Phys J Plus. 2015;130:115.

    Article  Google Scholar 

  7. Dogonchi AS, Muneer Ismael A, Ali Chamkha J, Ganji DD. Numerical analysis of natural convection of Cu-water nanofluid filling triangular cavity with semicircular bottom wall. J Therm Anal Calorim. 2018;. https://doi.org/10.1007/s10973-018-7520-4(0123456789).

    Article  Google Scholar 

  8. Dogonchi A, Tayebi T, Chamkha AJ, Ganji DD. Natural convection analysis in a square enclosure with a wavy circular heater under magnetic field and nanoparticles. J Therm Anal Calorim. 2019;. https://doi.org/10.1007/s10973-019-08408-0.

    Article  Google Scholar 

  9. Hashemi-Tilehnoee M, Dogonchi AS, Seyyedi SM, Chamkha AJ, Ganji DD. Magnetohydrodynamic natural convection and entropy generation analyses inside a nanofluid-filled incinerator-shaped porous cavity with wavy heater block. J Therm Anal Calorim. 2020;. https://doi.org/10.1007/s10973-019-09220-6.

    Article  Google Scholar 

  10. Sheikholeslami M. Numerical approach for MHD \(Al_{2}O_{3}\)-water nanofluid transportation inside a permeable medium using innovative computer method. Comput Method Appl M. 2019;344:306–18.

    Article  Google Scholar 

  11. Sheikholeslami M. Magnetic field influence on \(CuO-H_{2}O\) nanofluid convective flow in a permeable cavity considering various shapes for nanoparticles. Int J Hydrog Energy. 2017;42(31):19611–21.

    Article  CAS  Google Scholar 

  12. Selimefendigil F, Öztop HF. Magnetic field effects on the forced convection of CuO-water nanofluid flow in a channel with circular cylinders and thermal predictions using ANFIS. Int J Mech Sci. 2018;146:9–24.

    Article  Google Scholar 

  13. Selimefendigil F, Öztop HF. Fluid-solid interaction of elastic-step type corrugation effects on the mixed convection of nanofluid in a vented cavity with magnetic field. Int J Mech Sci. 2019;152:185–97.

    Article  Google Scholar 

  14. Turkyilmazoglu M. MHD fluid flow and heat transfer due to a stretching rotating disk. Int J Therm Sci. 2012;51:195–201.

    Article  Google Scholar 

  15. Hayat T, Sajjad R, Abbas Z, Sajid M, Hendi AA. Radiation effects on MHD flow of Maxwell fluid in a channel with porous medium. Int J Heat Mass Transf. 2011;54:854–62.

    Article  Google Scholar 

  16. Aristov SN, Knyazev DV, Polyanin AD. Exact solutions of the Navier–Stokes equations with the linear dependence of velocity components on two space variables. Theor Found Chem Eng. 2009;43(5):642–62.

    Article  CAS  Google Scholar 

  17. Malik MY, Khan M, Salahuddin T. Study of an MHD flow of the CARREAU FLUID flow over a stretching sheet with a variable thickness by using a Implicit finite difference scheme. J Appl Mech Tech Phys. 2017;58(6):1033–9.

    Article  Google Scholar 

  18. Misra JC, Shit GC, Rath HJ. Flow and heat transfer of an MHD viscoelastic fluid in a channel with stretching walls: some applications to haemodynamics. Comput. Fluids. 2008;37:1–11.

    Article  CAS  Google Scholar 

  19. Fabula AG, Hoyt JW, Naval Ordnance Test Station China Lake Calif. The Effect of Additives on Fluid Friction, Technical report, AD-612056, National Technical Information Service, Ohio., 1964.

  20. Eringen AC. Simple micropolar fluids. Int J Eng Sci. 1964;2:205–17.

    Article  Google Scholar 

  21. Kamal MA, Ashraf M, Syed KS. Numerical solution of steady viscous flow of a micropolar fluid driven by injection between two porous disks. Appl Math Comput. 2006;17:1–10.

    Google Scholar 

  22. Ashraf M, Jameel N, Ali K. MHD non-Newtonian micropolar fluid flow and heat transfer in channel with stretching walls. Appl Math Mech-Engl. 2013;34(10):1263–76.

    Article  Google Scholar 

  23. Nawaz M, Hayat T, Ahmed Z. Melting heat transfer in axisymmetric stagnation-point flow of Jeffrey fluid. J Appl Mech Tech Phys. 2016;57(2):308–16.

    Article  CAS  Google Scholar 

  24. Aristov SN, Prosviryakov EY. A New class of exact solutions for three dimensional thermal diffusion equations. Theor Found Chem Eng. 2016;50(3):286–93.

    Article  CAS  Google Scholar 

  25. Aristov SN, Polyanin AD. New classes of exact solutions of Euler equations. Dokl Phys. 2008;53(3):166–71.

    Article  CAS  Google Scholar 

  26. Mukhopadhyay S, Layek GC, Samad SA. Study of MHD boundary layer flow over a heated stretching sheet with variable viscosity. Int J Heat Mass Transf. 2005;48(21–22):4460–6.

    Article  CAS  Google Scholar 

  27. Mukhopadhyay S, Layek GC. Effects of thermal radiation and variable fluid viscosity on free convective flow and heat transfer past a porous stretching surface. Int J Heat Mass Transf. 2008;51(9–10):2167–78.

    Article  CAS  Google Scholar 

  28. Ali ME. The effect of variable viscosity on mixed convection heat transfer along a vertical moving surface. Int J Therm Sci. 2006;45(1):60–9.

    Article  CAS  Google Scholar 

  29. Makinde OD. Laminar falling liquid film with variable viscosity along an inclined heated plate. Appl Math Comput. 2006;175(1):80–8.

    Google Scholar 

  30. Prasad KV, Vajravelu K, Datti PS. The effects of variable fluid properties on the hydro-magnetic flow and heat transfer over a non-linearly stretching sheet. Int J Therm Sci. 2010;49(3):603–10.

    Article  CAS  Google Scholar 

  31. Alam MS, Rahman MM, Sattar MA. Transient magnetohydrodynamic free convective heat and mass transfer flow with thermophoresis past a radiate inclined permeable plate in the presence of variable chemical reaction and temperature dependent viscosity. Nonlinear Anal-Model. 2009;14(1):3–20.

    Article  CAS  Google Scholar 

  32. Salem AM. Variable viscosity and thermal conductivity effects on MHD flow and heat transfer in viscoelastic fluid over a stretching sheet. Phys Lett A. 2007;369(4):315–22.

    Article  CAS  Google Scholar 

  33. Eldabe NTM, Mohamed MAA. Heat and mass transfer in hydromagnetic flow of the non-Newtonian fluid with heat source over an accelerating surface through a porous medium. Chaos Soliton Fract. 2002;13(4):907–17.

    Article  CAS  Google Scholar 

  34. Seddeek MA, Salama FA. The effects of temperature dependent viscosity and thermal conductivity on unsteady MHD convective heat transfer past a semi-infinite vertical porous moving plate with variable suction. Comput Mater Sci. 2007;40(2):186–92.

    Article  CAS  Google Scholar 

  35. Shercliff JA. Text book of magnetohydrodynamics. Oxford: Pergamon Press; 1965.

    Google Scholar 

  36. Eringen AC. Theory of thermomicropolar fluids. J Math Anal Appl. 1972;38:480–96.

    Article  Google Scholar 

  37. Lukaszewicz G. Micropolar fluids: theory and applications. Boston: Birkhauser; 1999.

    Book  Google Scholar 

  38. Fakoura M, Vahabzadeh A, Ganji DD, Hatami M. Analytical study of micropolar fluid flow and heat transfer in a channel with permeable walls. J Mol Liq. 2015;204:198–204.

    Article  Google Scholar 

  39. Ling JX, Dybbs A, Forced convection over a flat plate submersed in a porous medium: variable viscosity case, Paper 87-WA/HT-23, ASMA. New York: NY; 1987.

  40. Hazarika GC, Phukan B. Effects of variable viscosity and thermal conductivity on magnetohydrodynamic free convection flow of a micropolar fluid past a stretching plate through porous medium with radiation, heat generation, and Joule dissipation. Turk J Phys. 2016;40:40–51.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Rafiq.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiq, S., Abbas, Z., Nawaz, M. et al. Computational study on the effects of variable viscosity of micropolar liquids on heat transfer in a channel. J Therm Anal Calorim 145, 3269–3279 (2021). https://doi.org/10.1007/s10973-020-09889-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09889-0

Keywords

Navigation