Skip to main content
Log in

Tuning the thermal stability of copper(II) hexacyanoferrate(II) nanoparticles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

It is well known that the physical properties of nanoparticles can be tuned by controlling synthetic factors such as pH, temperature, reactant ratio or type of stabiliser used. In this work, the reactant ratio is varied to produce batches of copper(II) hexacyanoferrate(II) (Cu-HCF) with different cyano decomposition temperatures. This is accomplished by controlling the number of Fe(CN) 4−6 site vacancies throughout the structure. By reducing the number of vacancies and consequently the need for water to complete the structure, the thermal decomposition temperature of Cu-HCF can be increased. In addition to this, we also note that the guest ion similarly contributes to the decomposition temperature. By exchanging K+ with Cs+, an increased resistance to thermal decomposition is realised. As the incorporation of Cs+ ions into the structure does not alter the number of Fe(CN) 4−6 site vacancies, this enhancement is attributed to a change in the geometry of the copper coordination sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tao QQ, Zhang X, Prabaharan K, Dai Y. Separation of cesium from wastewater with copper hexacyanoferrate film in an electrochemical system driven by microbial fuel cells. Bioresour Technol. 2019;278:456–9.

    Article  CAS  Google Scholar 

  2. Roh H, Kim Y, Kim YK, Harbottle D, Lee JW. Amino-functionalized magnetic chitosan beads to enhance immobilization of potassium copper hexacyanoferrate for selective Cs+ removal and facile recovery. RSC Adv. 2019;9(2):1106–14.

    Article  CAS  Google Scholar 

  3. Wang JL, Zhuang ST, Liu Y. Metal hexacyanoferrates-based adsorbents for cesium removal. Coord Chem Rev. 2018;374:430–8.

    Article  CAS  Google Scholar 

  4. Causse J, Tokarev A, Ravaux J, Moloney M, Barre Y, Grandjean A. Facile one-pot synthesis of copper hexacyanoferrate nanoparticle functionalised silica monoliths for the selective entrapment of Cs-137. J Mater Chem A. 2014;2(25):9461–4.

    Article  CAS  Google Scholar 

  5. Grandjean A, Delchet C, Causse J, Barré Y, Guari Y, Larionova J. Effect of the chemical nature of different transition metal ferrocyanides to entrap Cs. J Radioanal Nucl Chem. 2016;307(1):427–36.

    Article  CAS  Google Scholar 

  6. Chang SQ, Chang L, Han W, Li Z, Dai YD, Zhang HQ. In situ green production of Prussian blue/natural porous framework nanocomposites for radioactive Cs+ removal. J Radioanal Nucl Chem. 2018;316(1):209–19.

    Article  CAS  Google Scholar 

  7. Takahashi A, Tanaka H, Minami K, Noda K, Ishizaki M, Kurihara M, Ogawa H, Kawamoto T. Unveiling Cs-adsorption mechanism of Prussian blue analogs: Cs+-percolation via vacancies to complete dehydrated state. RSC Adv. 2018;8(61):34808–16.

    Article  CAS  Google Scholar 

  8. Cabaud C, Barré Y, De Windt L, Gill S, Dooryhée E, Moloney MP, Massoni N, Grandjean A. Removing Cs within a continuous flow set-up by an ionic exchanger material transformable into a final waste form. Adsorption. 2019;25(4):765–71.

    Article  CAS  Google Scholar 

  9. Moloney MP, Cabaud C, Massoni N, Stafford S, Gun’ko YK, Venkatesan M, Grandjean A. Searching for the nano effect in Cu-HCF (II) particles to improve Cs sorption efficiency: Highlighting the use of intrinsic magnetism. Colloids Surf A Physicochem Eng Asp. 2019;582:123758.

    Article  CAS  Google Scholar 

  10. Zong Y, Zhang Y, Lin X, Ye D, Qiao D, Zeng S. Facile synthesis of potassium copper ferrocyanide composite particles for selective cesium removal from wastewater in the batch and continuous processes. RSC Adv. 2017;7(50):31352–64.

    Article  CAS  Google Scholar 

  11. Hwang KS, Park CW, Lee KW, Park SJ, Yang HM. Highly efficient removal of radioactive cesium by sodium–copper hexacyanoferrate-modified magnetic nanoparticles. Colloid Surf A Physicochem Eng Asp. 2017;516:375–82.

    Article  CAS  Google Scholar 

  12. Kim YK, Kim T, Kim Y, Harbottle D, Lee JW. Highly effective Cs+ removal by turbidity-free potassium copper hexacyanoferrate-immobilized magnetic hydrogels. J Hazard Mater. 2017;340:130–9.

    Article  CAS  Google Scholar 

  13. Kim YK, Bae K, Kim Y, Harbottle D, Lee JW. Immobilization of potassium copper hexacyanoferrate in doubly crosslinked magnetic polymer bead for highly effective Cs+ removal and facile recovery. J Ind Eng Chem. 2018;68:48–56.

    Article  CAS  Google Scholar 

  14. Motl A, John J, Sebesta F. Composite absorbers of inorganic ion-exchangers and polyacrylonitrile binding matrix—V. Influence of ionising radiation on the leachability of Cs-137 from cemented composite NiFC-PAN absorber. J Radioanal Nucl Chem. 1997;222(1–2):205–7.

    Article  CAS  Google Scholar 

  15. Michel C, Barré Y, De Windt L, de Dieuleveult C, Brackx E, Grandjean A. Ion exchange and structural properties of a new cyanoferrate mesoporous silica material for Cs removal from natural saline waters. J Environ Chem Eng. 2017;5(1):810–7.

    Article  CAS  Google Scholar 

  16. Catala L, Mallah T. Nanoparticles of Prussian blue analogs and related coordination polymers: from information storage to biomedical applications. Coord Chem Rev. 2017;346:32–61.

    Article  CAS  Google Scholar 

  17. Mayer M, Dedovets D, Guari Y, Larionova J, Long J, Causse J. Synthesis of poly(diallyldimethylammonium) capped copper hexacyanoferrate (CuHCF) nanoparticles: an efficient stabiliser for Pickering emulsions. J Colloid Interface Sci. 2017;505:364–72.

    Article  CAS  Google Scholar 

  18. Boles MA, Ling D, Hyeon T, Talapin DV. The surface science of nanocrystals. Nat Mater. 2016;15(2):141–53.

    Article  CAS  Google Scholar 

  19. Yoffe AD. Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. Adv Phys. 2001;50(1):1–208.

    Article  CAS  Google Scholar 

  20. Rajesh KM, Ajitha B, Ashok Kumar Reddy Y, Suneetha Y, Sreedhara Reddy P. Synthesis of copper nanoparticles and role of pH on particle size control. Mater Today Proc. 2016;3(6):1985–91.

    Article  Google Scholar 

  21. Guardia P, Labarta A, Batlle X. Tuning the size, the shape, and the magnetic properties of iron oxide nanoparticles. J Phys Chem C. 2011;115(2):390–6.

    Article  CAS  Google Scholar 

  22. Hu M, Chen JY, Li ZY, Au L, Hartland GV, Li XD, Marquez M, Xia YN. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev. 2006;35(11):1084–94.

    Article  CAS  Google Scholar 

  23. Moloney MP, Gun’ko YK, Kelly JM. Chiral highly luminescent CdS quantum dots. Chem Commun. 2007;38:3900–2.

    Article  Google Scholar 

  24. Wardecki D, Ojwang DO, Grins J, Svensson G. Neutron diffraction and EXAFS studies of K2x/3Cu[Fe(CN)6]2/3·nH2O. Cryst Growth Des. 2017;17(3):1285–92.

    Article  CAS  Google Scholar 

  25. Tachikawa H, Haga K, Yamada K. Mechanism of K+, Cs+ ion exchange in nickel ferrocyanide: a density functional theory study. Comput Theor Chem. 2017;1115:175–8.

    Article  CAS  Google Scholar 

  26. Mähler J, Persson I. A study of the hydration of the alkali metal ions in aqueous solution. Inorg Chem. 2012;51(1):425–38.

    Article  Google Scholar 

  27. Gotoh A, Uchida H, Ishizaki M, Satoh T, Kaga S, Okamoto S, Ohta M, Sakamoto M, Kawamoto T, Tanaka H, Tokumoto M, Hara S, Shiozaki H, Yamada M, Miyake M, Kurihara M. Simple synthesis of three primary colour nanoparticle inks of Prussian blue and its analogues. Nanotechnology. 2007;18(34):6.

    Article  Google Scholar 

  28. Akerblom IE, Ojwang DO, Grins J, Svensson G. A thermogravimetric study of thermal dehydration of copper hexacyanoferrate by means of model-free kinetic analysis. J Therm Anal Calorim. 2017;129(2):721–31.

    Article  Google Scholar 

  29. Soek RN, Schmidt A, Winnischofer H, Vidotti M. Anisotropic behavior of layer-by-layer films using highly disordered copper hexacyanoferrate(II) nanoparticles. Appl Surf Sci. 2016;378:253–8.

    Article  CAS  Google Scholar 

  30. Ojwang DO, Grins J, Wardecki D, Valvo M, Renman V, Häggström L, Ericsson T, Gustafsson T, Mahmoud A, Hermann RP, Svensson G. Structure characterization and properties of K-containing copper hexacyanoferrate. Inorg Chem. 2016;55(12):5924–34.

    Article  CAS  Google Scholar 

  31. Avila M, Reguera L, Rodríguez-Hernández J, Balmaseda J, Reguera E. Porous framework of T2[Fe(CN)6]·xH2O with T = Co, Ni, Cu, Zn, and H2 storage. J Solid State Chem. 2008;181(11):2899–907.

    Article  CAS  Google Scholar 

  32. Jiménez-Gallegos J, Rodríguez-Hernández J, Yee-Madeira H, Reguera E. Structure of porous copper prussian blue analogues: nature of their high H2 storage capacity. J Phys Chem C. 2010;114(11):5043–8.

    Article  Google Scholar 

  33. Gil DM, Avila M, Reguera E, Pagola S, Inés Gómez M, Carbonio RE. Lead hexacyanoferrate(II) tetrahydrate: crystal structure, FTIR spectroscopy and thermal decomposition studies. Polyhedron. 2012;33(1):450–5.

    Article  CAS  Google Scholar 

  34. Ghosh SN. Infrared spectra of the Prussian blue analogs. J Inorg Nucl Chem. 1974;36(11):2465–6.

    Article  CAS  Google Scholar 

  35. Lejeune J, Brubach J-B, Roy P, Bleuzen A. Application of the infrared spectroscopy to the structural study of Prussian blue analogues. C R Chim. 2014;17(6):534–40.

    Article  CAS  Google Scholar 

  36. Gellings PJ. Structure of some hexacyanoferrates(II) of the type K2MIIFe(CN)6. Z Phys Chem. 1967;54:296.

    Article  CAS  Google Scholar 

  37. De Marco D, Marchese A, Migliardo P, Bellomo A. Thermal analysis of some cyano compounds. J Therm Anal. 1987;32(3):927–37.

    Article  Google Scholar 

Download references

Acknowledgements

Elemental Analysis was carried out by the Laboratoire de metallographie et d’analyses chimiques, CEA, DEN, Univ. Montpellier, DMRC, SA2I DEN/MAR/SA2I/DIR, CEA Marcoule, France.

Funding

Research was conducted in part by the Center for Hierarchical Waste Form Materials (CHWM), an Energy Frontier Research Center (EFRC) supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE‐SC0016574. We also thank the EDDEM-CEA project for funding this work.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Agnès Grandjean.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moloney, M.P., Massoni, N. & Grandjean, A. Tuning the thermal stability of copper(II) hexacyanoferrate(II) nanoparticles. J Therm Anal Calorim 145, 2353–2362 (2021). https://doi.org/10.1007/s10973-020-09823-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09823-4

Keywords

Navigation