Skip to main content
Log in

Heatline visualization of mixed convection inside double lid-driven cavity having heated wavy wall

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The current problem is performed to analyze the heatline visualization of the mixed convection mechanism and heat transfer in a double lid-driven square cavity having a heated wavy bottom surface. The moving vertical surfaces are under adiabatic conditions, and the top surface is at a cold temperature. The finite element method is employed to determine the dimensionless governing equations controlled by specific boundary conditions. The implications of the Reynolds number (\(10 \le {\mathrm{Re}} \le 500\)), the directions of the constant moving wall (\(\lambda _{\mathrm{l}}= \pm 1, \lambda _{\mathrm{r}}= \pm 1\)), Richardson number (\(0.01 \le {\mathrm{Ri}} \le 100\)), Prandtl number (\(0.015 \le \Pr \le 10\)) and the number of oscillations (\(1 \le {\mathrm{N}} \le 4\)) are visualized by the streamlines, isotherms and the heatlines. The same direction of lid-driven cases leads to two primary circulation cells. The Richardson number increases as it imposes the increment of the vertical temperature gradient. At a high Prandtl number, the convection mode of heat transfer is fully established, and heat conduction occurs at a low Prandtl number. Moreover, the number of oscillations has the most significant direct impact on the streamlines and the temperature distributions compared to the flat surface. Higher Reynolds and Prandtl numbers result in an increment in the local and average Nusselt numbers. The result shows that one oscillation of the wavy surface with a low Richardson number yields to have an optimum heat transfer in the cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sadiq MA, Alsabery AI, Hashim I. MHD mixed convection in a lid-driven cavity with a bottom trapezoidal body: two-phase nanofluid model. Energies. 2018;11(11):2943.

    Article  CAS  Google Scholar 

  2. Alsabery AI, Ismael MA, Chamkha AJ, Hashim I. Effects of two-phase nanofluid model on MHD mixed convection in a lid-driven cavity in the presence of conductive inner block and corner heater. J Therm Anal Calorim. 2019;135(1):729.

    Article  CAS  Google Scholar 

  3. Esfe MH, Saedodin S, Malekshah EH, Babaie A, Rostamian H. Mixed convection inside lid-driven cavities filled with nanofluids. J Therm Anal Calorim. 2019;135(1):813.

    Article  CAS  Google Scholar 

  4. Bouchmel M, Nabil B, Ammar AM, Kamel G, Ahmed O. Entropy generation and heat transfer of Cu–water nanofluid mixed convection in a cavity. Int J Mech Aerosp Ind Mech Manuf Eng. 2014;8(12):7.

    Google Scholar 

  5. Azwadi CSN, Jahanshaloo L, Safdari A. The effect of mixed convection on particle laden flow analysis in a cavity using a Lattice Boltzmann method. Comput Math Appl. 2014;67(1):52.

    Article  Google Scholar 

  6. Nguyen MT, Aly AM, Lee SW. A numerical study on unsteady natural/mixed convection in a cavity with fixed and moving rigid bodies using the ISPH method. Int J Numer Methods Heat Fluid Flow. 2018;28(3):684.

    Article  Google Scholar 

  7. Shankar B, Kumar J, Shivakumara I. Magnetohydrodynamic instability of mixed convection in a differentially heated vertical channel. Eur Phys J Plus. 2019;134(2):53.

    Article  CAS  Google Scholar 

  8. Khan AQ, Rasheed A. Mixed convection magnetohydrodynamics flow of a nanofluid with heat transfer: A numerical study. Math Probl Eng. 2019;2019:14.

    Article  CAS  Google Scholar 

  9. Izadi S, Armaghani T, Ghasemiasl R, Chamkha AJ, Molana M. A comprehensive review on mixed convection of nanofluids in various shapes of enclosures. Powder Technol. 2019;343:880.

    Article  CAS  Google Scholar 

  10. Ozgen F, Varol Y. Numerical study of mixed convection in a channel filled with a porous medium. Appl Sci. 2019;9(2):211.

    Article  CAS  Google Scholar 

  11. Ma Y, Mohebbi R, Rashidi MM, Yang Z. Mixed convection characteristics in a baffled U-shaped lid-driven cavity in the presence of magnetic field. J Therm Anal Calorim. 2019;140:1967.

    Article  CAS  Google Scholar 

  12. Moallemi M, Jang K. Prandtl number effects on laminar mixed convection heat transfer in a lid-driven cavity. Int J Heat Mass Transf. 1992;35(8):1881.

    Article  CAS  Google Scholar 

  13. Prasad AK, Koseff JR. Combined forced and natural convection heat transfer in a deep lid-driven cavity flow. Int J Heat Fluid Flow. 1996;17(5):460.

    Article  Google Scholar 

  14. Mahapatra SK, Nanda P, Sarkar A. Interaction of mixed convection in two-sided lid driven differentially heated square enclosure with radiation in presence of participating medium. Heat Mass Transf. 2006;42(8):739.

    Article  Google Scholar 

  15. Shah P, Rovagnati B, Mashayek F, Jacobs GB. Subsonic compressible flow in two-sided lid-driven cavity. Part I: equal walls temperatures. Int J Heat Mass Transf. 2007;50(21–22):4206.

    Article  CAS  Google Scholar 

  16. Roy M, Roy S, Basak T. Role of various moving walls on energy transfer rates via heat flow visualization during mixed convection in square cavities. Energy. 2015;82:1.

    Article  Google Scholar 

  17. Bakar NA, Karimipour A, Roslan R. Effect of magnetic field on mixed convection heat transfer in a lid-driven square cavity. J Thermodyn. 2016;2016:14.

    Article  CAS  Google Scholar 

  18. Kareem AK, Gao S. Mixed convection heat transfer enhancement in a cubic lid-driven cavity containing a rotating cylinder through the introduction of artificial roughness on the heated wall. Phys Fluids. 2018;30(2):025103.

    Article  CAS  Google Scholar 

  19. Rabani M. Numerical analysis of mixed convection heat transfer in a triangular cavity with moving walls. Heat Transf Res. 2019;50(5):463.

    Article  Google Scholar 

  20. Shenoy A, Sheremet M, Pop I. Convective flow and heat transfer from wavy surfaces: viscous fluids, porous media, and nanofluids. Boca Raton: CRC Press; 2016.

    Book  Google Scholar 

  21. Sheremet MA, Pop I, Roşca NC. Magnetic field effect on the unsteady natural convection in a wavy-walled cavity filled with a nanofluid: Buongiorno’s mathematical model. J Taiwan Inst Chem Eng. 2016;61:211.

    Article  CAS  Google Scholar 

  22. Alsabery AI, Sheremet MA, Chamkha AJ, Hashim I. Impact of nonhomogeneous nanofluid model on transient mixed convection in a double lid-driven wavy cavity involving solid circular cylinder. Int J Mech Sci. 2019;150:637.

    Article  Google Scholar 

  23. Mousavi SM, Biglarian M, Darzi AAR, Farhadi M, Afrouzi HH, Toghraie D. Heat transfer enhancement of ferrofluid flow within a wavy channel by applying a non-uniform magnetic field. J Therm Anal Calorim. 2020;139:3331.

    Article  CAS  Google Scholar 

  24. Al-Amiri A, Khanafer K, Bull J, Pop I. Effect of sinusoidal wavy bottom surface on mixed convection heat transfer in a lid-driven cavity. Int J Heat Mass Transf. 2007;50(9–10):1771.

    Article  Google Scholar 

  25. Hussein A, Hussain S. Mixed convection through a lid-driven air-filled square cavity with a hot wavy wall. Int J Mech Mater Eng. 2010;5(2):222.

    Google Scholar 

  26. Nasrin R, Parvin S. Hydromagnetic effect on mixed convection in a lid-driven cavity with sinusoidal corrugated bottom surface. Int Commun Heat Mass Transf. 2011;38(6):781.

    Article  Google Scholar 

  27. Mekroussi S, Nehari D, Bouzit M, Chemloul NES. Analysis of mixed convection in an inclined lid-driven cavity with a wavy wall. J Mech Sci Technol. 2013;27(7):2181.

    Article  Google Scholar 

  28. Saha LK, Somadder MC, Roy NC. Hydro-magnetic mixed convection flow in a lid-driven cavity with wavy bottom surface. Am J Appl Math. 2015;3(1):8.

    Article  Google Scholar 

  29. Saha LK, Somadder MC, Uddin KMS. Mixed convection heat transfer in a lid driven cavity with wavy bottom surface. Am J Appl Math. 2013;1(5):92.

    Article  Google Scholar 

  30. Sheremet MA, Pop I, Bachok N. Effect of thermal dispersion on transient natural convection in a wavy-walled porous cavity filled with a nanofluid: Tiwari and Das’ nanofluid model. Int J Heat Mass Transf. 2016;92:1053.

    Article  CAS  Google Scholar 

  31. Öztop HF, Sakhrieh A, Abu-Nada E, Al-Salem K. Mixed convection of MHD flow in nanofluid filled and partially heated wavy walled lid-driven enclosure. Int Commun Heat Mass Transf. 2017;86:42.

    Article  Google Scholar 

  32. Sheremet M, Pop I, Öztop HF, Abu-Hamdeh N. Natural convection of nanofluid inside a wavy cavity with a non-uniform heating. Int J Numer Methods Heat Fluid Flow. 2017;27(4):958.

    Article  Google Scholar 

  33. Cho CC. Heat transfer and entropy generation of mixed convection flow in Cu–water nanofluid-filled lid-driven cavity with wavy surface. Int J Heat Mass Transf. 2018;119:163.

    Article  CAS  Google Scholar 

  34. Kimura S, Bejan A. The “heatline” visualization of convective heat transfer. J Heat Transf. 1983;105(4):916.

    Article  Google Scholar 

  35. Costa VA. Bejan’s heatlines and masslines for convection visualization and analysis. Appl Mech Rev. 2006;59(3):126.

    Article  Google Scholar 

  36. Kaluri RS, Basak T, Roy S. Bejan’s heatlines and numerical visualization of heat flow and thermal mixing in various differentially heated porous square cavities. Numer Heat Transf Part A Appl. 2009;55(5):487.

    Article  Google Scholar 

  37. Basak T, Ramakrishna D, Roy S, Matta A, Pop I. A comprehensive heatline based approach for natural convection flows in trapezoidal enclosures: effect of various walls heating. Int J Therm Sci. 2011;50(8):1385.

    Article  Google Scholar 

  38. Basak T, Singh AK, Sruthi TPA, Roy S. Finite element simulations on heat flow visualization and entropy generation during natural convection in inclined square cavities. Int Commun Heat Mass Transf. 2014;51:1.

    Article  Google Scholar 

  39. Alsabery AI, Chamkha AJ, Hussain SH, Saleh H, Hashim I. Heatline visualization of natural convection in a trapezoidal cavity partly filled with nanofluid porous layer and partly with non-Newtonian fluid layer. Adv Powder Technol. 2015;26(4):1230.

    Article  CAS  Google Scholar 

  40. Alsabery AI, Chamkha AJ, Saleh H, Hashim I. Heatline visualization of conjugate natural convection in a square cavity filled with nanofluid with sinusoidal temperature variations on both horizontal walls. Int J Heat Mass Transf. 2016;100:835.

    Article  Google Scholar 

  41. Bondareva NS, Sheremet MA, Oztop HF, Abu-Hamdeh N. Heatline visualization of MHD natural convection in an inclined wavy open porous cavity filled with a nanofluid with a local heater. Int J Heat Mass Transf. 2016;99:872.

    Article  CAS  Google Scholar 

  42. Bondareva NS, Sheremet MA, Oztop HF, Abu-Hamdeh N. Heatline visualization of natural convection in a thick walled open cavity filled with a nanofluid. Int J Heat Mass Transf. 2017;109:175.

    Article  CAS  Google Scholar 

  43. Arani AAA, Ababaei A, Sheikhzadeh GA, Aghaei A. Numerical simulation of double-diffusive mixed convection in an enclosure filled with nanofluid using Bejan’s heatlines and masslines. Alex Eng J. 2018;57(3):1287.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the financial support received from the Malaysian Ministry of Education research Grant FRGS/1/2019/STG06/UKM/01/2. We thank the respected reviewers for their constructive comments which clearly enhanced the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammar I. Alsabery.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizul, F.M., Alsabery, A.I., Hashim, I. et al. Heatline visualization of mixed convection inside double lid-driven cavity having heated wavy wall. J Therm Anal Calorim 145, 3159–3176 (2021). https://doi.org/10.1007/s10973-020-09806-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09806-5

Keywords

Navigation