Skip to main content
Log in

Influences of complex multi-channel turbulator on hybrid nanoparticle transportation and thermal behavior

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Turbulator with new shape is utilized in current research to improve thermal efficiency. Hybrid nanomaterial has been involved as carrier fluid and kɛ turbulence model was selected for modeling. Simplified equations were solved via FVM and outputs in terms of contours were presented. Stronger secondary eddy is a result of increasing in inlet velocity and revolution which can provide thinner boundary layer and increase temperature gradient but at cost of greater pressure drop. Due to better mixing of nanomaterial in greater Re, higher Nu can be achieved. Higher turbulent intensity can be obtained with insertion of turbulator and convective heat transfer improves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Manh TD, Nam ND, Abdulrahman GK, Moradi R, Babazadeh H. Impact of MHD on hybrid nanomaterial free convective flow within a permeable region. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09008-8.

    Article  Google Scholar 

  2. Sheikholeslami M, Jafaryar M, Shafee A, Li Z, Haq R. Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. Int J Heat Mass Transf. 2019;136:1233–40.

    Article  CAS  Google Scholar 

  3. Shafee A, Sheikholeslami M, Jafaryar M, Babazadeh H. Irreversibility of hybrid nanoparticles within a pipe fitted with turbulator. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09248-8.

    Article  Google Scholar 

  4. Sheikholeslami M, Jafaryar M, Shafee A, Babazadeh H. Acceleration of discharge process of clean energy storage unit with insertion of porous foam considering nanoparticle enhanced paraffin. J Clean Prod. 2020;261:121206.

    Article  CAS  Google Scholar 

  5. Hajizadeh MR, Selimefendigil F, Muhammad T, Ramzan M, Babazadeh H, Li Z. Solidification of PCM with nano powders inside a heat exchanger. J Mol Liq. 2020;306:112892.

    Article  CAS  Google Scholar 

  6. Babazadeh H, Shah Z, Ullah I, Kumam P, Shafee A. Analyze of hybrid nanofluid behavior within a porous cavity including Lorentz forces and radiation impacts. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09416-1.

    Article  Google Scholar 

  7. Shafee A, Firouzi A, Nam ND, Babazadeh H. Elliptic cavity filled with hybrid nanomaterial under consideration of magnetic field. Int J Mod Phys C. 2020. https://doi.org/10.1142/S0129183120500801.

    Article  Google Scholar 

  8. Rezaeianjouybari B, Sheikholeslami M, Shafee A, Babazadeh H. A novel bayesian optimization for flow condensation enhancement using nanorefrigerant: a combined analytical and experimental study. Chem Eng Sci. 2020. https://doi.org/10.1016/j.ces.2019.115465.

    Article  Google Scholar 

  9. Szilágyi IM, Kállay-Menyhárd A, Šulcová P, Kristóf J, Pielichowski K, Šimon P. Recent advances in thermal analysis and calorimetry presented at the 1st Journal of Thermal Analysis and Calorimetry Conference and 6th V4 (Joint Czech-Hungarian-Polish-Slovakian) Thermoanalytical Conference (2017). J Therm Anal Calorim. 2018;133:1–4.

    Article  CAS  Google Scholar 

  10. Sheikholeslami M, Rezaeianjouybari B, Darzi M, Shafee A, Li Z, Nguyen TK. Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int J Heat Mass Transf. 2019;141:974–80.

    Article  CAS  Google Scholar 

  11. Tang G, Shafee A, Nam ND, Tlili I. Coulomb forces impacts on nanomaterial transportation within porous tank with lid walls. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09407-2.

    Article  Google Scholar 

  12. Ma X, Sheikholeslami M, Jafaryar M, Shafee A, Nguyen-Thoi T, Li Z. Solidification inside a clean energy storage unit utilizing phase change material with copper oxide nanoparticles. J Clean Prod. 2020;245:118888.

    Article  CAS  Google Scholar 

  13. Qin Y, Liang J, Tan K, Li F. A side by side comparison of the cooling effect of building blocks with retro-reflective and diffuse-reflective walls. Sol Energy. 2016;133:172–9.

    Article  Google Scholar 

  14. Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;344:319–33.

    Article  Google Scholar 

  15. Anitha S, Thomas T, Parthiban V, Pichumani M. What dominates heat transfer performance of hybrid nanofluid in single pass shell and tube heat exchanger? Adv Powder Technol. 2019;30(12):3107–17.

    Article  CAS  Google Scholar 

  16. Bhattad A, Sarkar J, Ghosh P. Experimentation on effect of particle ratio on hydrothermal performance of plate heat exchanger using hybrid nanofluid. Appl Therm Eng. 2019;162:114309.

    Article  CAS  Google Scholar 

  17. Li Y, Aski FS, Barzinjy AA, Dara RN, Shafee A, Tlili I. Nanomaterial thermal treatment along a permeable cylinder. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08706-7.

    Article  Google Scholar 

  18. Qin Y. Pavement surface maximum temperature increases linearly with solar absorption and reciprocal thermal inertial. Int J Heat Mass Transf. 2016;97:391–9.

    Article  Google Scholar 

  19. Wang P, Li JB, Bai FW, Liu DY, Xu C, Zhao L, Wang ZF. Experimental and theoretical evaluation on the thermal performance of a windowed volumetric solar receiver. Energy. 2017;119(15):652–61.

    Article  CAS  Google Scholar 

  20. Qin Y, Liang J, Yang H, Deng Z. Gas permeability of pervious concrete and its implications on the application of pervious pavements. Measurement. 2016;78:104–10.

    Article  Google Scholar 

  21. Farshad SA, Sheikholeslami M. Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis. Renew Energy. 2019;141:246–58.

    Article  CAS  Google Scholar 

  22. Fu G, Guo J, Yao X, Summers PA, Widijatmoko SD, Hall P. An investigation of the current status of recycling spent lithium-ion batteries from consumer electronics in China. J Clean Prod. 2017;161(10):765–80.

    Google Scholar 

  23. Babazadeh H, Ambreen T, Shehzad SA, Shafee A. Ferrofluid non-Darcy heat transfer involving second law analysis; an application of CVFEM. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09264-z.

    Article  Google Scholar 

  24. Qin Y, Zhao Y, Chen X, Wang L, Li F, Bao T. Moist curing increases the solar reflectance of concrete. Constr Build Mater. 2019;215:114–8.

    Article  Google Scholar 

  25. Zhang Y, Zhang X, Li M, Liu Z. Research on heat transfer enhancement and flow characteristic of heat exchange surface in cosine style runner. Heat and Mass Transfer. 2019;55:3117–31.

    Article  Google Scholar 

  26. Ji Q, Guo J-F. Oil price volatility and oil-related events: an Internet concern study perspective. Appl Energy. 2015;137(1):256–64.

    Article  Google Scholar 

  27. Szilágyi IM, Santala E, Heikkilä M, Kemell M, Nikitin T, Khriachtchev L, Räsänen M, Ritala M, Leskelä M. Thermal study on electrospun polyvinylpyrrolidone/ammonium metatungstate nanofibers: optimising the annealing conditions for obtaining WO3 nanofibers. J Therm Anal Calorim. 2011;105(1):73.

    Article  CAS  Google Scholar 

  28. Sheikholeslami M, Keshteli AN, Babazadeh H. Nanoparticles favorable effects on performance of thermal storage units. J Mol Liq. 2020;300:112329.

    Article  CAS  Google Scholar 

  29. Wang G, Qi C, Liu M, Li C, Yan Y, Liang L. Effect of corrugation pitch on thermo-hydraulic performance of nanofluids in corrugated tubes of heat exchanger system based on exergy efficiency. Energy Convers Manag. 2019;186:51–65.

    Article  CAS  Google Scholar 

  30. Poongavanam GK, Panchabikesan K, Murugesan R, Duraisamy S, Ramalingam V. Experimental investigation on heat transfer and pressure drop of MWCNT—solar glycol based nanofluids in shot peened double pipe heat exchanger. Powder Technol. 2019;345:815–24.

    Article  CAS  Google Scholar 

  31. Bhattad A, Sarkar J, Ghosh P. Discrete phase numerical model and experimental study of hybrid nanofluid heat transfer and pressure drop in plate heat exchanger. Int Commun Heat Mass Transfer. 2018;91:262–73.

    Article  CAS  Google Scholar 

  32. Wang G, Wang F, Shen F, Jiang T, Chen Z, Hu P. Experimental and optical performances of a solar CPV device using a linear Fresnel reflector concentrator. Renew Energy. 2020;146:2351–61.

    Article  Google Scholar 

  33. Sheikholeslami M, Ghasemi A. Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM. Int J Heat Mass Transf. 2018;123:418–31.

    Article  CAS  Google Scholar 

  34. Dongmin Yu, Zhu H, Han W, Holburn D. Dynamic multi agent-based management and load frequency control of PV/Fuel cell/wind turbine/CHP in autonomous microgrid system. Energy. 2019;173(15):554–68.

    Google Scholar 

  35. Qin Y, Luo J, Chen Z, Mei G, Yan L-E. Measuring the albedo of limited-extent targets without the aid of known-albedo masks. Sol Energy. 2018;171:971–6.

    Article  Google Scholar 

  36. Sheikholeslami M. Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng. 2019;344:306–18.

    Article  Google Scholar 

  37. Mofrad AM, Peixoto C, Blumeyer J, Liu J, Hunt HK, Hammond KD. Vibrational spectroscopy of sodalite: theory and experiments. J Phys Chem C. 2018;122(43):24765–79.

    Article  CAS  Google Scholar 

  38. Manh TD, Nam ND, Abdulrahman GK, Shafee A, Shamlooei M, Babazadeh H, Jilani AK, Tlili I. Effect of radiative source term on the behavior of nanomaterial with considering Lorentz forces. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09077-9.

    Article  Google Scholar 

  39. Cao L, Chaoyu T, Pengfei H, Liu S. Influence of solid particle erosion (SPE) on safety and economy of steam turbines. Appl Therm Eng. 2019;150(5):552–63.

    Article  Google Scholar 

  40. Gao W, Farahani MR. Generalization bounds and uniform bounds for multi-dividing ontology algorithms with convex ontology loss function. Comput J. 2017;60(9):1289–99.

    Google Scholar 

  41. Qin Y, He H. A new simplified method for measuring the albedo of limited extent targets. Solar Energy. 2017;157(Supplement C):1047–55.

    Article  Google Scholar 

  42. Karuppasamy M, Saravanan R, Chandrasekaran M, Muthuraman V. Numerical exploration of heat transfer in a heat exchanger tube with cone shape inserts and Al2O3 and CuO nanofluids. Mater Today Proc. 2019. https://doi.org/10.1016/j.matpr.2019.08.242.

    Article  Google Scholar 

  43. Poongavanam GK, Kumar B, Duraisamy S, Panchabikesan K, Ramalingam V. Heat transfer and pressure drop performance of solar glycol/activated carbon based nanofluids in shot peened double pipe heat exchanger. Renew Energy. 2019;140:580–91.

    Article  CAS  Google Scholar 

  44. Qi C, Luo T, Liu M, Fan F, Yan Y. Experimental study on the flow and heat transfer characteristics of nanofluids in double-tube heat exchangers based on thermal efficiency assessment. Energy Convers Manag. 2019;197:111877.

    Article  CAS  Google Scholar 

  45. Sheikholeslami M, Haq R, Shafee A, Li Z, Elaraki YG, Tlili I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf. 2019;135:470–8.

    Article  CAS  Google Scholar 

  46. Qin Y, He H, Ou X, Bao T. Experimental study on darkening water-rich mud tailings for accelerating desiccation. J Clean Prod. 2019. https://doi.org/10.1016/j.jclepro.2019.118235.

    Article  Google Scholar 

  47. Manh TD, Nam ND, Abdulrahman GK, Moradi R, Babazadeh H. The influence of Hybrid nanoparticles transportation on natural convection inside porous domain. Int J Mod Phys C. 2020;31(02):2050026.

    Article  CAS  Google Scholar 

  48. Gao W, Wang WF. The vertex version of weighted wiener number for bicyclic molecular structures. Comput Math Methods Med 2015, 10, Article ID 418106. http://dx.doi.org/10.1155/2015/418106.

  49. Sheikholeslami M, Haq R, Shafee A, Li Z. Heat transfer behavior of Nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int J Heat Mass Transf. 2019;130:1322–42.

    Article  CAS  Google Scholar 

  50. Manh TD, Salehi F, Shafee A, Nam ND, Shakeriaski F, Babazadeh H, Vakkar A, Tlili I. Role of magnetic force on the transportation of nano powders including radiation. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09182-9.

    Article  Google Scholar 

  51. Iasir A, Rafi M, Lombardi T, Lu Q, Mofrad AM, Vaninger M, Zhang X, Singh DJ. Electronic and magnetic properties of perovskite selenite and tellurite compounds: coSeO 3, NiSeO 3, CoTeO 3, and NiTeO 3. Phys Rev B. 2020;101(4):045107.

    Article  CAS  Google Scholar 

  52. Shafee A, Jafaryar M, Abohamzeh E, Nam ND, Tlili I. Simulation of thermal behavior of hybrid nanomaterial in a tube improved with turbulator. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09247-9.

    Article  Google Scholar 

  53. Qin Y, Zhang M, Hiller JE. Theoretical and experimental studies on the daily accumulative heat gain from cool roofs. Energy. 2017;129:138–47.

    Article  Google Scholar 

  54. Gao W, Siddiqui MK, Imran M, Jamil MK, Farahani MR. Forgotten topological index of chemical structure in drugs. Saudi Pharm J. 2016;24(3):258–64.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mofrad, Mehdi A, Schellenberg Parker S, Peixoto C, Hunt Heather K, Hammond Karl D. Calculated infrared and Raman signatures of Ag+, Cd2+, Pb2+, Hg2+, Ca2+, Mg2+, and K+ sodalites. Microporous Mesoporous Mater. 2020;296:109983.

    Article  CAS  Google Scholar 

  56. Sani AL, Ayani M, Ali Behbahani-Nia S, Shafee A, Babazadeh H. Presentation of new approach for Energy Consumption reduction with use of Solar system. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09252-y.

    Article  Google Scholar 

  57. Diglio G, Roselli C, Sasso M, Jawali U. Borehole heat exchanger with nanofluids as heat carrier. Geothermics. 2018;72:112–23.

    Article  Google Scholar 

  58. Purbia D, Khandelwal A, Kumar A, Sharma AK. Graphene-water nanofluid in heat exchanger: mathematical modelling, simulation and economic evaluation. Int Commun Heat Mass Transf. 2019;108:104327.

    Article  CAS  Google Scholar 

  59. Qin Y, He Y, Wu B, Ma S, Zhang X. Regulating top albedo and bottom emissivity of concrete roof tiles for reducing building heat gains. Energy Build. 2017;156(Supplement C):218–24.

    Article  Google Scholar 

  60. Sheikholeslami M, Ghasemi A, Li Z, Shafee A, Saleem S. Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term. Int J Heat Mass Transf. 2018;126:1252–64.

    Article  CAS  Google Scholar 

  61. Manh TD, Nam ND, Jacob K, Hajizadeh A, Babazadeh H, Mahjoub M, Tlili I, Li Z. Simulation of heat transfer in 2D porous tank in appearance of magnetic nanofluid. Phys A Stat Mech Appl. 2020. https://doi.org/10.1016/j.physa.2019.123937.

    Article  Google Scholar 

  62. Gao W, Wang WF. Analysis of k-partite ranking algorithm in area under the receiver operating characteristic curve criterion. Int J Comput Math. 2018;95(8):1527–47.

    Article  Google Scholar 

  63. Manh TD, Nam ND, Abdulrahman GK, Moradi R, Babazadeh H. Alumina nanoparticle flow within a channel with permeable walls. Int J Mod Phys C. 2020;31(02):2050026. https://doi.org/10.1142/S0129183120500266.

    Article  CAS  Google Scholar 

  64. Sheikholeslami M, Jafaryar M, Hedayat M, Shafee A, Li Z, Nguyen TK, Bakouri M. Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int J Heat Mass Transf. 2019;137:1290–300.

    Article  CAS  Google Scholar 

  65. Manh TD, Tlili I, Shafee A, Nguyen-Thoi T, Hamouda H. Modeling of hybrid nanofluid behavior within a permeable media involving buoyancy effect. Phys A Stat Mech Appl. 2020. https://doi.org/10.1016/j.physa.2019.123940.

    Article  Google Scholar 

  66. Laukkanen T, Seppälä A. Interplant heat exchanger network synthesis using nanofluids for interplant heat exchange. Appl Therm Eng. 2018;135:133–44.

    Article  CAS  Google Scholar 

  67. Sheikholeslami M, Mehryan SAM, Shafee A, Sheremet MA. Variable magnetic forces impact on Magnetizable hybrid nanofluid heat transfer through a circular cavity. J Mol Liq. 2019;277:388–96.

    Article  CAS  Google Scholar 

  68. Kim D, Kwon Y, Cho Y, Li C, Cheong S, Hwang Y, Lee J, Hong D, Moona S. Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Curr Appl Phys. 2009;9:119–23.

    Article  Google Scholar 

Download references

Acknowledgements

Current article has been supported by the National Natural Science Foundation of China (Grant Number 51979215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houman Babazadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Jafaryar, M., Kumar, R. et al. Influences of complex multi-channel turbulator on hybrid nanoparticle transportation and thermal behavior. J Therm Anal Calorim 145, 2777–2786 (2021). https://doi.org/10.1007/s10973-020-09798-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09798-2

Keywords

Navigation