Skip to main content
Log in

Investigation of heat pump-driven humidification–dehumidification desalination system with energy recovery option

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper presents a vapor compression heat pump-driven humidification–dehumidification process with energy recovery option. Two systems with different applications of recovered energy are proposed. System A recovers energy for preheating inlet feed water to the heat pump condenser, while system B recovers energy for preheating the humidifier inlet air. The system performance metrics such as gained output ratio (GOR), recovery ratio (RR), productivity, specific electrical energy consumption (SEEC) and the cost of freshwater production are investigated based on variations in mass flowrate ratios, humidifier effectiveness, seawater temperature, brine heat exchanger effectiveness, unit cost of electricity and expected plant life. The thermo-economic performance of the proposed system is compared with system “C” without energy recovery option. Findings reveal the need to recover thermal energy associated with the discharged brine for humidification and dehumidification desalination system having ineffective/poor component effectiveness, especially the humidifier. The proposed system shows that the cost of freshwater for system C can be reduced by about 15.23% with energy recovery in system A. The GOR of system C is improved by about 23.1%, whereas the RR, productivity and SEEC of system C are improved by about 23.3% each. The conditions at which the energy recover is effective are also shown in the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

COE:

Cost of electricity ($ kW hr−1)

GOR:

Gained output ratio (−)

HDH:

Humidification–dehumidification (−)

HP:

Heat pump (−)

MR:

Mass flowrate ratio (−)

LPM:

Liter per minute (L min−1)

RR:

Recovery ratio (%)

SEEC:

Specific electrical energy consumption (kW hr m−3)

WH:

Water-heated (−)

\({\dot{\text{A}}}\) :

Plant availability (%)

\(C_{\text{p}}\) :

Specific heat capacity at constant pressure (kJ kg−1K−1)

h:

Enthalpy (kJ kg−1)

\({\dot{\text{c}}}\) :

Annual cost ($ yr−1)

c:

Product cost ($ m−3)

h:

Enthalpy (kJ kg−1)

\(\dot{m}\) :

Mass flow rate (kg s−1)

n:

Plant life expectancy (yr)

\(\dot{Q}\) :

Heat transfer rate (kW)

\(\dot{W}\) :

Power (kW)

P:

Pressure (kPa)

Z:

Capital costs ($)

T:

Temperature (oC)

\(h_{\text{fg}}\) :

Latent heat of vaporization (kJ kg−1)

\(\dot{V}\) :

Volumetric flowrate (m3 h−1)

\(\dot{Z}\) :

Annual capital cost ($ yr−1)

ɛ:

Effectiveness (−)

ω:

Humidity ratio (kgwater kg −1air )

\({\mathcal{L}}\) :

Specific cost of operating labor ($ m−3)

\(\alpha\) :

Amortization factor (yr−1)

i:

Interest rate (%)

$:

US dollars ($)

1, 2, 3, …:

State points

a:

Air

b:

Brine

BHX:

Brine heat exchanger

Comp:

Compressor

Cond:

Condenser

D:

Dehumidifier

Elect:

Electricity

Evap:

Evaporator

EXV:

Expansion valve

f:

Fixed capital

Fan:

Blower/fan

fw:

Freshwater

H:

Humidifier

in:

Entering/input

L:

Labor capital

mg:

Management

mt:

Maintenance

out:

Output/exiting

p:

Product

Pump:

Pump

r:

Refrigerant

T:

Total annual

w, sw:

Water

References

  1. Khalifa A, Lawal D, Antar M, Khayet M. Experimental and theoretical investigation on water desalination using air gap membrane distillation. Desalination. 2015;376:94–108. https://doi.org/10.1016/j.desal.2015.08.016.

    Article  CAS  Google Scholar 

  2. Khalifa AE, Imteyaz BA, Lawal DU, Abido MA. Heuristic optimization techniques for air gap membrane distillation system. Arab J Sci Eng. 2017;42:1951–65. https://doi.org/10.1007/s13369-016-2391-0.

    Article  CAS  Google Scholar 

  3. Lawal DU, Khalifa AE. Experimental investigation of an air gap membrane distillation unit with double-sided cooling channel. Desalin Water Treat. 2016;57:11066–80. https://doi.org/10.1080/19443994.2015.1042065.

    Article  CAS  Google Scholar 

  4. Seyednezhad M, Sheikholeslami M, Ali JA, et al. Nanoparticles for water desalination in solar heat exchanger. J Therm Anal Calorim. 2020;139:1619–36. https://doi.org/10.1007/s10973-019-08634-6.

    Article  CAS  Google Scholar 

  5. Omara AAM, Abuelnuor AAA, Mohammed HA, et al. Phase change materials (PCMs) for improving solar still productivity: a review. J Therm Anal Calorim. 2020;139:1585–617. https://doi.org/10.1007/s10973-019-08645-3.

    Article  CAS  Google Scholar 

  6. Modi KV, Jani HK, Gamit ID. Impact of orientation and water depth on productivity of single-basin dual-slope solar still with Al2O3 and CuO nanoparticles. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09351-1.

    Article  Google Scholar 

  7. Ashtiani S, Hormozi F. Design improvement in a stepped solar still based on entropy generation minimization. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08580-3.

    Article  Google Scholar 

  8. Suresh C, Shanmugan S. Effect of water flow in a solar still using novel materials. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08449-5.

    Article  Google Scholar 

  9. Kabeel AE, Sathyamurthy R, El-Agouz SA, et al. Experimental studies on inclined PV panel solar still with cover cooling and PCM. J Therm Anal Calorim. 2019;138:3987–95.

    Article  CAS  Google Scholar 

  10. Dhivagar R, Sundararaj S. Thermodynamic and water analysis on augmentation of a solar still with copper tube heat exchanger in coarse aggregate. J Therm Anal Calorim. 2019;136:89–99.

    Article  CAS  Google Scholar 

  11. Sathish Kumar TR, Jegadheeswaran S, Chandramohan P. Performance investigation on fin type solar still with paraffin wax as energy storage media. J Therm Anal Calorim. 2019;136:101–12.

    Article  CAS  Google Scholar 

  12. Narayan GP, Sharqawy MH, Lienhard VJH, Zubair SM. Thermodynamic analysis of humidification dehumidification desalination cycles. Desalin Water Treat. 2010;16:339–53. https://doi.org/10.5004/dwt.2010.1078.

    Article  CAS  Google Scholar 

  13. Sharqawy MH, Antar MA, Zubair SM, Elbashir AM. Optimum thermal design of humidification dehumidification desalination systems. Desalination. 2014;349:10–21. https://doi.org/10.1016/j.desal.2014.06.016.

    Article  CAS  Google Scholar 

  14. Mistry KH, Lienhard JH, Zubair SM. Effect of entropy generation on the performance of humidification-dehumidification desalination cycles. Int J Therm Sci. 2010;49:1837–47. https://doi.org/10.1016/J.IJTHERMALSCI.2010.05.002.

    Article  CAS  Google Scholar 

  15. Tlili I, Osman M, Barhoumi EM, et al. Performance enhancement of a humidification–dehumidification desalination system. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08775-8.

    Article  Google Scholar 

  16. Aburub A, Aliyu M, Lawal DU, Mohammed A. Experimental investigations of a cross-flow humidification dehumidification. Desalin Syst. 2017;7:569.

    Google Scholar 

  17. Lawal DU, Antar MA, Aburub A, Aliyu M. Performance assessment of a crossflow packed-bed humidification–dehumidification (HDH) desalination system—the effect of mass extraction. Desalin Water Treat. 2018;104:28–37.

    Article  CAS  Google Scholar 

  18. Al-Sulaiman FA, Zubair MI, Atif M, Gandhidasan P, Al-Dini SA, Antar MA, et al. Humidification dehumidification desalination system using parabolic trough solar air collector. Appl Therm Eng. 2014;75:809–16. https://doi.org/10.1016/j.applthermaleng.2014.10.072.

    Article  Google Scholar 

  19. Antar MA, Sharqawy MH. Experimental investigations on the performance of an air heated humidification–dehumidification desalination system. Desalin Water Treat. 2013. https://doi.org/10.1080/19443994.2012.714598.

    Article  Google Scholar 

  20. Garg K, Khullar V, Das SK, et al. Parametric study of the energy efficiency of the HDH desalination unit integrated with nanofluid-based solar collector. J Therm Anal Calorim. 2019;135:1465–78. https://doi.org/10.1007/s10973-018-7547-6.

    Article  CAS  Google Scholar 

  21. Kasaeian A, Babaei S, Jahanpanah M, Sarrafha H, Sulaiman Alsagri A, Ghaffarian S, et al. Solar humidification-dehumidification desalination systems: a critical review. Energy Convers Manag. 2019;201:112129. https://doi.org/10.1016/J.ENCONMAN.2019.112129.

    Article  Google Scholar 

  22. Sheikholeslami M. Numerical simulation for solidification in a LHTESS by means of nano-enhanced PCM. J Taiwan Inst Chem Eng. 2018;86:25–41. https://doi.org/10.1016/J.JTICE.2018.03.013.

    Article  CAS  Google Scholar 

  23. Sheikholeslami M, Haq R, Shafee A, Li Z. Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int J Heat Mass Transf. 2019;130:1322–42. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2018.11.020.

    Article  CAS  Google Scholar 

  24. He WF, Han D, Ji C. Investigation on humidification dehumidification desalination system coupled with heat pump. Desalination. 2018;436:152–60. https://doi.org/10.1016/J.DESAL.2018.02.021.

    Article  CAS  Google Scholar 

  25. He WFF, Wen T, Han D, Luo LTT, Li RYY, Zhong WCC. Energetic, entropic and economic analysis of a heat pump coupled humidification dehumidification desalination system using a packed bed dehumidifier. Energy Convers Manag. 2019;194:11–21.

    Article  Google Scholar 

  26. Lawal D, Antar M, Khalifa A, Zubair S, Al-Sulaiman F. Humidification-dehumidification desalination system operated by a heat pump. Energy Convers Manag. 2018;161:128–40. https://doi.org/10.1016/j.enconman.2018.01.067.

    Article  Google Scholar 

  27. Lawal DU, Zubair SM, Antar MA. Exergo-economic analysis of humidification-dehumidification (HDH) desalination systems driven by heat pump (HP). Desalination. 2018;443:11–25. https://doi.org/10.1016/j.desal.2018.05.011.

    Article  CAS  Google Scholar 

  28. Dehghani S, Date A, Akbarzadeh A. Performance analysis of a heat pump driven humidification-dehumidification desalination system. Desalination. 2018;445:95–104. https://doi.org/10.1016/J.DESAL.2018.07.033.

    Article  CAS  Google Scholar 

  29. Zhang Y, Zhang H, Zheng W, You S, Wang Y. Optimal operating conditions of a hybrid humidification-dehumidification and heat pump desalination system with multi-objective particle swarm algorithm. Desalination. 2019;468:114076. https://doi.org/10.1016/J.DESAL.2019.114076.

    Article  CAS  Google Scholar 

  30. Shafii MB, Jafargholi H, Faegh M. Experimental investigation of heat recovery in a humidification-dehumidification desalination system via a heat pump. Desalination. 2018;437:81–8. https://doi.org/10.1016/J.DESAL.2018.03.004.

    Article  CAS  Google Scholar 

  31. Zhang Y, Zhu C, Zhang H, Zheng W, You S, Zhen Y. Experimental study of a humidification-dehumidification desalination system with heat pump unit. Desalination. 2018;442:108–17. https://doi.org/10.1016/J.DESAL.2018.05.020.

    Article  CAS  Google Scholar 

  32. Faegh M, Shafii MB. Performance evaluation of a novel compact humidification-dehumidification desalination system coupled with a heat pump for design and off-design conditions. Energy Convers Manag. 2019;194:160–72. https://doi.org/10.1016/J.ENCONMAN.2019.04.079.

    Article  CAS  Google Scholar 

  33. Xu H, Zhao Y, Dai YJ. Experimental study on a solar assisted heat pump desalination unit with internal heat recovery based on humidification-dehumidification process. Desalination. 2019;452:247–57. https://doi.org/10.1016/J.DESAL.2018.11.019.

    Article  CAS  Google Scholar 

  34. Lawal DU, Antar MA, Khalifa A, Zubair SM, Al-Sulaiman F. Experımental investigation of heat pump driven humidification-dehumidification desalination system for water desalination and space conditioning. Desalination. 2020;475:114199. https://doi.org/10.1016/j.desal.2019.114199.

    Article  CAS  Google Scholar 

  35. Faegh M, Behnam P, Shafii MB. A review on recent advances in humidification-dehumidification (HDH) desalination systems integrated with refrigeration, power and desalination technologies. Energy Convers Manag. 2019;196:1002–36. https://doi.org/10.1016/J.ENCONMAN.2019.06.063.

    Article  Google Scholar 

  36. Sheikholeslami M, Rezaeianjouybari B, Darzi M, Shafee A, Li Z, Nguyen TK. Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int J Heat Mass Transf. 2019;141:974–80. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2019.07.043.

    Article  CAS  Google Scholar 

  37. Rezaeianjouybari B, Sheikholeslami M, Shafee A, Babazadeh H. A novel Bayesian optimization for flow condensation enhancement using nanorefrigerant: a combined analytical and experimental study. Chem Eng Sci. 2020;215:115465. https://doi.org/10.1016/J.CES.2019.115465.

    Article  CAS  Google Scholar 

  38. Lawal DU, Antar MA, Khalifa A, Zubair SM. Heat pump operated humidification-dehumidification desalination system with option of energy recovery. Sep Sci Technol. 2020;70:1–19. https://doi.org/10.1080/01496395.2019.1706576.

    Article  CAS  Google Scholar 

  39. Siddiqui OK, Sharqawy MH, Antar MA, Zubair SM. Performance evaluation of variable pressure humidification-dehumidification systems. Desalination. 2017;409:171–82. https://doi.org/10.1016/J.DESAL.2017.01.025.

    Article  CAS  Google Scholar 

  40. Zubair SM, Antar MA, Elmutasim SM, Lawal DU. Performance evaluation of humidification-dehumidification (HDH) desalination systems with and without heat recovery options: an experimental and theoretical investigation. Desalination. 2018;436:161–75. https://doi.org/10.1016/j.desal.2018.02.018.

    Article  CAS  Google Scholar 

  41. Cengel Y, Boles M. Thermodynamics: an engineering approach. 7th ed. New York: McGraw-Hill; 2011. https://doi.org/10.1108/eb031863.

    Book  Google Scholar 

  42. El-Dessouky HT, Ettouney H. Fundamentals of salt water desalination. London: Elsevier; 2002.

    Google Scholar 

  43. Kabeel AE, Elmaaty TA, El-Said EMS. Economic analysis of a small-scale hybrid air HDH–SSF (humidification and dehumidification–water flashing evaporation) desalination plant. Energy. 2013;53:306–11. https://doi.org/10.1016/J.ENERGY.2013.02.042.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Center of Research Excellence in Desalination and Water Treatment, Research Institute. Project # DISC1501.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Antar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Thermodynamic properties of process streams

See Tables 25.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawal, D.U., Antar, M.A. Investigation of heat pump-driven humidification–dehumidification desalination system with energy recovery option. J Therm Anal Calorim 145, 3177–3194 (2021). https://doi.org/10.1007/s10973-020-09794-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09794-6

Keywords

Navigation