Skip to main content
Log in

Thermal and structural characterization of bitumen by modulated differential scanning calorimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper presents the results of investigation of model bitumens, prepared by mixing of individual fractions of bitumen (saturates, aromatics, waxes, resins and asphaltenes) in various ratios, using modulated differential scanning calorimetry and dynamic temperature sweep test. It was shown that, depending on the content of various fractions, bitumen has structural phases of different compositions. When there are no saturated hydrocarbons in bitumen, it has an amorphous structure. Low molecular weight saturated hydrocarbons form a weakly ordered phase in the bitumen at low temperatures (− 42 to − 14 °C), and high molecular weight saturated hydrocarbons—an ordered phase in the middle temperature range (− 10 to 70 °C). Asphaltenes form the amorphous phase at high temperatures (70–90 °C). The presence of these phases in bitumen is recorded on the heat flow curves in the form of glass transition effects, effects of cold crystallization and melting. At a high content of the ordered phase of high molecular weight hydrocarbons and the amorphous phase of asphaltenes, a gel structure is formed in the bitumen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Polacco G, Filippi S, Merusi F, Stastna G. A review of the fundamentals of polymer-modified asphalts: asphalt/polymer interactions and principles of compatibility. Adv Colloid Interface Sci. 2015. https://doi.org/10.1016/j.cis.2015.07.010.

    Article  PubMed  Google Scholar 

  2. Lesueur D. The colloidal structure of bitumen: consequence on the rheology and on the mechanism of bitumen modification. Adv Colloid Interface Sci. 2009. https://doi.org/10.1016/j.cis.2008.08.011.

    Article  PubMed  Google Scholar 

  3. Fuhr BJ, Hawrelechko C, Holloway LR, Huang H. Comparison of bitumen fractionation methods. Energy Fuels. 2005. https://doi.org/10.1021/ef049768l.

    Article  Google Scholar 

  4. Raki L, Masson J-F, Collins P. Rapid bulk fractionation of maltenes into saturates, aromatic, and resins by flash chromatography. Energy Fuels. 2000. https://doi.org/10.1021/ef990100u.

    Article  Google Scholar 

  5. Porto M, Caputo P, Loise V, et al. Bitumen and bitumen modification: a review on latest advances. Appl Sci. 2019. https://doi.org/10.3390/app9040742.

    Article  Google Scholar 

  6. Speight JG. Petroleum asphaltenes part 1 asphaltenes resins and the structure of petroleum. Oil Gas Sci Technol Rev IFP. 2004. https://doi.org/10.2516/ogst:2004032.

    Article  Google Scholar 

  7. Lima FCDA, Alvim RS, Miranda CR. From single asphaltenes and resins to nanoaggregates: a computational study. Energy Fuels. 2017. https://doi.org/10.1021/acs.energyfuels.7b02002.

    Article  Google Scholar 

  8. Okhotnikova ES, Yusupova TN, Ganeeva YM, Romanov GV, Frolov IN, Ziganshina SA. The relationship between bitumen microstructure and viscous flow. Petrol Sci Technol. 2015. https://doi.org/10.1080/10916466.2014.988870.

    Article  Google Scholar 

  9. Yu X, Burnhamb NA, Granados-Focilc S, Taoa M. Bitumen’s microstructures are correlated with its bulk thermal and rheological properties. Fuel. 2019. https://doi.org/10.1016/j.fuel.2019.05.092.

    Article  Google Scholar 

  10. Edwards Y, Redelius P. Rheological effect of waxes in bitumen. Energy Fuels. 2003. https://doi.org/10.1021/ef020202b.

    Article  Google Scholar 

  11. Zhao H, Cao Y, Sit SP, et al. Thermal characteristics of bitumen pyrolysis. J Therm Anal Calorim. 2012. https://doi.org/10.1007/s10973-011-1590-x.

    Article  Google Scholar 

  12. Frolov IN, Yusupova TN, Ziganshin MA, Okhotnikova ES, Firsin AA. Formation of phase composition of petroleum bitumen according to data of temperature modulated differential scanning calorimetry. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-017-6779-1.

    Article  Google Scholar 

  13. Cser F, Hopewell JL, Shanks RA. Reversible melting of thermally fractionated polyethylene. J Therm Anal Calorim. 1998. https://doi.org/10.1023/A:1010123416624.

    Article  Google Scholar 

  14. Chau J, Garlicka I, Wolf C, Teh J. Modulated DSC as a tool for polyethylene structure characterization. J Therm Anal Calorim. 2007. https://doi.org/10.1007/s10973-007-8527-4.

    Article  Google Scholar 

  15. Wang Z, Wei R, Ning X, et al. Thermal degradation properties of LDPE insulation for new and aged fine wires. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7957-5.

    Article  Google Scholar 

  16. Memon GM, Chollar BH. Glass transition measurements of asphalts by DSC. J Therm Anal Calorim. 1997. https://doi.org/10.1007/BF01996742.

    Article  Google Scholar 

  17. Zhang F, Hu Ch. The research for thermal behaviour, creep properties and morphology of SBS-modified asphalt. J Therm Anal Calorim. 2015. https://doi.org/10.1007/s10973-015-4595-z.

    Article  Google Scholar 

  18. Ragab AA, Mohammedy MM, El-Shafie M. Using waste flexible polyvinyl chloride treated with DOP/calcium hydroxide for enriching the performance of oxidizing bitumen. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7754-1.

    Article  Google Scholar 

  19. Okhotnikova ES, Ganeeva YM, Frolov IN, et al. Assessing the structure of recycled polyethylene-modified bitumen using the calorimetry method. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08172-1.

    Article  Google Scholar 

  20. Xia T, Zhou L, Xu J, et al. Rheology and thermal stability of polymer modified bitumen with coexistence of amorphous phase and crystalline phase. Constr Build Mater. 2018. https://doi.org/10.1016/j.conbuildmat.2018.05.073.

    Article  Google Scholar 

  21. Perez-Lepe A, Martinez-Boza FJ, Gallegos C. Influence of polymer concentration on the microstructure and rheological properties of high-density polyethylene (HDPE)-modified bitumen. Energy Fuels. 2005. https://doi.org/10.1021/ef0497513.

    Article  Google Scholar 

  22. Zhang F, Hu Ch, Zhuang W. The research for low-temperature rheological properties and structural characteristics of high-viscosity modified asphalt. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-017-6569-9.

    Article  Google Scholar 

  23. Wu SP, Zhu GJ, Liu G, Pang L. Laboratory research on thermal behavior and characterization of the ultraviolet aged asphalt binder. J Therm Anal Calorim. 2009. https://doi.org/10.1007/s10973-008-9252-3.

    Article  Google Scholar 

  24. Wei Z, Yu Y, Zhou C, et al. Relationship between melting behavior and morphological changes of semicrystalline polymers. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6255-y.

    Article  Google Scholar 

  25. Masson J-F, Polomark GM, Collins P. Time-dependence microstructure of bitumen and its fractions by modulated differential scanning calorimetry. Energy Fuels. 2002. https://doi.org/10.1021/ef010233r.

    Article  Google Scholar 

  26. Frolov IN, Bashkirceva NY, Firsin AA, Ziganshin MA, Okhotnikova ES. The steric hardening and structuring of paraffinic hydrocarbons in bitumen. Petrol Sci Technol. 2016. https://doi.org/10.1080/10916466.2016.1221962.

    Article  Google Scholar 

  27. Frolov IN, Okhotnikova ES, Ziganshin MA, et al. The study of bitumen by differential scanning calorimetry: the interpretation of thermal effects. Petrol Sci Technol. 2019. https://doi.org/10.1080/10916466.2018.1550499.

    Article  Google Scholar 

  28. Airey GD. Rheological properties of styrene butadiene styrene polymer modified road bitumens. Fuel. 2003. https://doi.org/10.1016/S0016-2361(03)00146-7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Okhotnikova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okhotnikova, E.S., Ganeeva, Y.M., Frolov, I.N. et al. Thermal and structural characterization of bitumen by modulated differential scanning calorimetry. J Therm Anal Calorim 142, 211–216 (2020). https://doi.org/10.1007/s10973-020-09772-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09772-y

Keywords

Navigation