Skip to main content
Log in

Heat capacity and thermal diffusivity of heavy oil saturated rock materials at high temperatures

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

As well-known the rate of heat extraction depends on the thermal conductivity, \(Q = - \, \lambda \left( T \right){\text{grad }}T\), and the fluids flow characteristics, while amounts of heat recovery depends on heat capacity of reservoir rocks, \(Q = \left( {1 - \phi } \right)\rho C_{\text{P}} T\), where \(\phi\) is the porosity. In the present work the laser-flash (LFA 457) and differential scanning calorimeter (DSC 204 F1) techniques were employed on a heavy oil saturated natural rock sample for accurate measurements of the thermal diffusivity and heat capacity over a temperature range from (294 to 1024) K and from (306 to 771) K, respectively. The density of the sample at room temperature was 2300 kg m−3 and the porosity was 17.1%. The sample for the present study comes from Russian Oil Field (Eastern Siberia, Russia). The expanded uncertainty of the thermal diffusivity and heat capacity measurements at the 95% confidence level with a coverage factor of k = 2 is estimated to be 3% and 1%, respectively. At low temperatures (below approximately 373 K), the sharp increases (up to η = 2.3) of the thermal diffusivity anisotropy was observed. Based on the measured thermal diffusivity and heat-capacity data, thermal conductivity of the same oil saturated rock sample was calculated using the thermodynamic relation \(\lambda = a\rho C_{\text{P}}\). The effect of temperature and various physical and chemical processes, such as thermal decomposition (chemical reactions) of pore heavy oil occurred in the sample during the heating in distinct temperature ranges were studied. The effect of pore heavy oil decomposition (under thermal stress) on the measured values of heat capacity and other thermophysical properties of rock sample at high temperatures (around 700 K) was experimentally observed. Also, we experimentally found weak temperature maximum of the heat-capacity of the sample under study in the low temperature range (around 380 K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Boberg TC. Thermal method of oil recovery. Somerset: Wiley; 1988.

    Google Scholar 

  2. Barbier E. Geothermal energy technology and current status: an overview. Renew Sustain Energy Rev. 2002;6:3–65.

    Google Scholar 

  3. Jia GS, Tao ZY, Meng XZ, Ma CF, Chai JC, Jin LW. Review of effective thermal conductivity models of rock–soil for geothermal energy applications. Geothermics. 2019;77:1–11.

    Google Scholar 

  4. Shah A, Fishwick R, Wood J, Leeke G, Rigby S, Greaves M. A review of novel techniques for heavy oil and bitumen extraction and upgrading. Energy Environ Sci. 2010;3:700–14.

    CAS  Google Scholar 

  5. Popov Y, Chekhonin E, Parshin A, Law D, Pissarenko D, Miklashevskiy D, Popov E, Spasennykh M, Safonov S, Romushkevich R, Bayuk I, Danilenko A, Gerasimov I, Ursegov S, Konoplev Y, Taraskin E. Experimental investigations of spatial and temporal variations in rock thermal properties as necessary stage in thermal EOR. In: SPE 165474-MS; 2013.

  6. Manrique E, Thomas C, Ravikirian R, Izadi M, Lantz M, Romero J, Alvarado V. EOR: current status and opportunities. SPE 130113, SPE improved oil recovery symposium, 24–28 April, Tulsa; 2010.

  7. Butler RM. Thermal recovery of oil and bitumen. Englewood Cliffs: Prentice-Hall; 1991.

    Google Scholar 

  8. Prats M. Thermal recovery, society of petroleum engineers. New York: AIME; 1986.

    Google Scholar 

  9. Williams CF, Sass JH. The role of temperature-dependent thermal conductivity in heat transfer at the geysers. In: Proceedings of international association of seismology and physics of the earth’s interior. 27th general assembly, Wellington: New Zealand; 1994.

  10. Abdulagatov IM, Emirov SN, Gairbekov KHA, Magomaeva MA, Askerov S, Ramazanova EN. The effective thermal conductivity of fluid saturated porous mica-ceramics at high temperatures and high pressures. Ind Eng Chem Res. 2002;41:3586–93.

    CAS  Google Scholar 

  11. Abdulagatov IM, Emirov SN, Abdulagatova ZZ, Askerov S. Effect of pressure and temperature on the thermal conductivity of rocks. J Chem Eng Data. 2006;51:22–33.

    CAS  Google Scholar 

  12. Abdulagatova ZZ, Abdulagatov IM, Emirov SN. Effect of temperature and pressure on the thermal conductivity of sandstone. Int J Rock Mech Min Sci. 2009;46:1055–71.

    Google Scholar 

  13. Abdulagatova ZZ, Abdulagatov IM, Emirov SN. Effect of pressure, temperature, and oil-saturation on the thermal conductivity of sandstone up to 250 MPa and 520 K. J Pet Sci Eng. 2010;73:141–55.

    CAS  Google Scholar 

  14. Abdulagatov IM,Abdulagatova ZZ, Kallaev SN, Omarov ZM, Ranjith PG. Heat-capacity measurements of sandstone at high temperatures. In: Ranjith PG, Zhao J, editors, Proceedings of the international conference on geomechanics, geo-energy and geo-resources, Australia, Melbourne, 28–29 Sept 2016, IC3G 2016, pp 493–9.

  15. Abdulagatov IM, Abdulagatova ZZ, Kallaev SN, Magomedov M-RM, Abdullaev KK, Ranjith PG. Thermal expansion coefficient measurements and density of sandstone at high temperatures. In: Ranjith PG, Zhao J, editors, Proceedings of the international conference on geomechanics, geo-energy and geo-resources, Australia, Melbourne, 28–29 Sept 2016, IC3G 2016, pp 500–6.

  16. Abdulagatov IM, Abdulagatova ZZ, Kallaev SM, Bakmaev AG, Ranjith PG. Thermal-diffusivity and heat-capacity measurements of sandstone at high temperatures using Laser-Flash and DSC methods. Int J Thermophys. 2015;36:658–91.

    CAS  Google Scholar 

  17. Abdulagatov IM, Abdulagatova ZZ, Kallaev SN, Omarov ZM. Heat-capacity measurements of sandstone at high temperatures. Geomech Geophys Geo-Energy Geo-Resour. 2019;5:65–85.

    Google Scholar 

  18. Alishaev MG, Abdulagatov IM, Abdulagatova ZZ. Effective thermal conductivity of fluid-saturated rocks: experiment and modelling. Eng Geol. 2012;135–136:24–39.

    Google Scholar 

  19. Ramazanova AE, Abdulagatov IM, Ranjith PG. Temperature effect on thermal conductivity of black coal. J Chem Eng Data. 2018;63:1534–45.

    CAS  Google Scholar 

  20. Hanley EJ, De Witt DP, Taylor RE. The thermal conductivity. In: Cezairlyan A, editor. Proceedings of the 7th symposium on thermophysical propertie. New York: ASME; 1977. p. 386–91.

    Google Scholar 

  21. Strack KM, Ibrahim AW, Keller GV, Stoyer CH. A method for the determination of the thermal conductivity of sandstones using a variable state approach. Geophys Prospect. 1982;30:454–69.

    Google Scholar 

  22. Schatz JF, Simmons G. Method of simultaneous measurement of radiative and lattice thermal conductivity. J Appl Phys. 1972;43:2588–94.

    Google Scholar 

  23. Zaug J, Abransom E, Brown JM, Slutsky LJ. Elastic constants, equation of state and thermal diffusivity at high pressure. In: Syono Y, Manghnani MH, editors. High-pressure. Washington: Terra/AGU; 1997. p. 157–66.

    Google Scholar 

  24. Chai M, Brown JM, Slutsy LJ. Thermal diffusivity of mantle minerals. Phys Chem Miner. 1996;23:470–5.

    CAS  Google Scholar 

  25. Kanamori H, Fujii N, Mizutani H. Thermal diffusivity measurement of rock-forming minerals from 300 to 1100 K. J Geophys Res. 1968;73:595–606.

    CAS  Google Scholar 

  26. Wen H, Lu JH, Xiao Y, Deng J. Temperature dependence of thermal conductivity, diffusivity and specific heat capacity for coal and rocks from coalfield. Thermochim Acta. 2015;619:41–7.

    CAS  Google Scholar 

  27. Deng J, Li QW, Xiao Y, Shu CM. Experimental study of the thermal properties of coal during pyrolysis, oxidation, and re-oxidation. Appl Thermal Eng. 2017;10:1137–52.

    Google Scholar 

  28. Popov YuA. In: Giot M, Mayinger F, Celeta GP, editors, Experimental heat transfer, fluid mechanics and thermodynamics, Proceedings of the 4th world congress on experimental heat transfer, fluid mechanics and thermodynamics, Brussels, Belgium, 1997; vol 1, pp 109–16.

  29. Popov YuA, Pribnow D, Sass JH, Williams CF, Burkhardt H. Characterization of rock thermal conductivity by high-resolution optical scanning. Geothermics. 1999;28:253–76.

    CAS  Google Scholar 

  30. Seipold U. Investigation of the thermal transport properties of amphibolites. I. Pressure dependence. High Temp High Press. 2002;34:299–306.

    CAS  Google Scholar 

  31. Geisting PA, Hofmeister AM. Thermal conductivity of disordered garnets from infrared spectroscopy. Phys Rev B. 2002;65:144305-1–-16.

    Google Scholar 

  32. Surma F, Geraud Y. Porosity and thermal conductivity of the soultz-sous-forêts granite. Pure Appl Geophys. 2003;160:1125–36.

    Google Scholar 

  33. Hofmeister AM. Thermal conductivity and thermodynamic properties from infrared spectroscopy. In: King P, Ramsey M, Swayze G, editors. Infrared spectroscopy in geochemistry, exploration geochemistry, and remote sensing. Ottawa: Mineralogical Association of Canada; 2004. p. 135–54.

    Google Scholar 

  34. Hofmeister AM. Physical properties of calcium aluminates from vibrational spectroscopy. Geochim Cosmochim Acta. 2004;68:4721–6.

    CAS  Google Scholar 

  35. Hofmeister AM. Thermal diffusivity of garnets at high temperatures. Phys Chem Miner. 2006;33:45–62.

    CAS  Google Scholar 

  36. Hofmeister AM. Inference of high thermal transport in the lower mantle from laser-flash experiments and the damped harmonic oscillator model. Phys Earth Planet Inter. 2008;170:201–6.

    Google Scholar 

  37. Hofmeister AM, Pertermann M. Thermal diffusivity of clinopyroxenes at elevated temperatures. Eur J Miner. 2008;20:537–49.

    CAS  Google Scholar 

  38. Hofmeister AM, Whittington AG, Pertermann M. Transport properties of high albite crystals and near-endmember feldspar and pyroxene glasses and melts to high temperatures. Contrib Mineral Petrol. 2009;158:381–400.

    CAS  Google Scholar 

  39. Hartmann A, Rath V, Clauser C. Thermal conductivity from core and well log data. Int J Rock Mech Min Sci. 2005;42:1042–55.

    Google Scholar 

  40. Pertermann M, Hofmeister AM. Thermal diffusivity of olivine-group minerals at high temperature. Am Miner. 2006;91:1747–60.

    CAS  Google Scholar 

  41. Pertermann M, Whittington AG, Hofmeister AM, Spera FJ, Zayak J. Transport properties of low-sanidine single-crystals, glasses and melts at high temperatures. Contrib Mineral Petrol. 2008;155:689–702.

    CAS  Google Scholar 

  42. Branlund JM, Hofmeister AM. Thermal diffusivity of quartz to 1000 °C: effects of impurities and the a–b phase transition. Phys Chem Miner. 2007;34:581–95.

    CAS  Google Scholar 

  43. Fuchs S, Förster A. Rock thermal conductivity of Mesozoic geothermal aquifers in the Northeast German Basin. Chemie der Erde-Geochem. 2010;70:13–22.

    CAS  Google Scholar 

  44. Popov Y. Theoretical models of the method of determination of the thermal properties of rocks on the basis of movable sources. Geol Razved (Geol Prospect). 1983;9:97–105.

    Google Scholar 

  45. Labus M, Labus K. Thermal conductivity and diffusivity of fine-grained sedimentary. J Therm Anal Calorim. 2018;132:1669–76.

    CAS  Google Scholar 

  46. Busby J. Thermal conductivity and diffusivity estimations for shallow geothermal systems. Q J Eng Geol Hydrogeol. 2016;49:138–46.

    Google Scholar 

  47. Sowizdzał A, Kaczmarczyk M. Analysis of thermal parameters of triassic, permian and carboniferous sedimentary rocks in central Poland. Geol J. 2016;51:65–76.

    Google Scholar 

  48. Luo J, Jia J, Zhao H, Zhu Y, Guo Q, Cheng C. Determination of the thermal conductivity of sandstones from laboratory to field scale. Environ Earth Sci. 2016;75:1158–69.

    Google Scholar 

  49. Di Sipio E, Chiesa S, Destro E, Galgaro A, Giaretta A, Gola G. Rock thermal conductivity as key parameter for geothermal numerical models. Energy Procedia. 2013;40:87–94.

    Google Scholar 

  50. Cha J, Seo J, Kim S. Building materials thermal conductivity measurement and correlation with heat flow meter, laser flash analysis and TCi. J Therm Anal Calorim. 2012;109:295–300.

    CAS  Google Scholar 

  51. Hemingway BS, Robie RA. Heat capacities and thermodynamic properties of annite (aluminous iron biotite). Am Mineral. 1990;75:183–7.

    CAS  Google Scholar 

  52. Mostafa MS, Afify N, Gaber A, Abu Zaid EF. Investigation of thermal properties of some basalt samples, Egypt. J Therm Anal Calorim. 2004;75:179–88.

    CAS  Google Scholar 

  53. Yong W, Dachs E, Withers AC. Heat capacity and phase equilibria of hollandite polymorph of KalSi3O8. Phys Chem Minerals. 2006;33:167–77.

    CAS  Google Scholar 

  54. Yong W, Dachs E, Withers AC, Essene EJ. Heat capacity and phase equilibria of wadeite-type of K2Si4O9. Contrib Mineral Petrol. 2008;155:137–46.

    CAS  Google Scholar 

  55. Yong W, Dachs E, Benisek A, Withers AC, Secco RA. Heat capacity, entropy, and phase equilibria of dmitryivanovite. Phys Chem Miner. 2012;39:259–67.

    CAS  Google Scholar 

  56. Hirono T, Hamada Y. Specific heat capacity and thermal diffusivity and their temperature dependences in a rock sample from adjacent to the Taiwan Chelungpu fault. J Geohys Res. 2010;115:B05313.

    Google Scholar 

  57. Miao SQ, Li HP, Chen G. Temperature dependence of thermal diffusivity, specific heat capacity, and thermal conductivity for several types of rocks. J Therm Anal Calorim. 2014;115:1057–63.

    CAS  Google Scholar 

  58. Waples DW, Waples JS. A review and evaluation of specific heat capacity of rocks, minerals, and subsurface fluids. Part 1: minerals and nonporous rocks. Nat Resour Res. 2004;13:97–122.

    CAS  Google Scholar 

  59. Hadgu T, Lum CC, Bean JE. Determination of heat capacity of Yucca Mountain stratigraphic layers. Int J Rock Mech Min Sci. 2007;44:1022–34.

    Google Scholar 

  60. Osako M, Yoneda A, Ito E. Thermal diffusivity, thermal conductivity and heat capacity of serpentine (antigorite) under high pressure. Phys Earth Planet Inter. 2010;183:229–33.

    CAS  Google Scholar 

  61. Herrin JM, Deming D. Thermal conductivity of US coals. J Geophys Res. 1996;101:381–6.

    Google Scholar 

  62. Zawilski BM, Iv RTL, Tritt TM. Description of the parallel thermal conductance technique for the measurements of the thermal conductivity of small diameter samples. Rec Sci Instrum. 2001;72:1770–4.

    CAS  Google Scholar 

  63. Jha MK, Verma AK, Maheshwar S, Chauhan A. Study of temperature effect on thermal conductivity of Jhiri shale from Upper Vindhyan, India. Bull Eng Geol Environ. 2016;75:1657–68.

    CAS  Google Scholar 

  64. Santa GD, Peron F, Galgaro A, Cultrera M, Bertermann D, Mueller J, Bernardi A. Laboratory measurements of gravel thermal conductivity: an update methodological approach. Energy Procedia. 2017;125:671–7.

    Google Scholar 

  65. Pollack GL. Kapitza resistance. Rev Mod Phys. 1969;41:48–81.

    CAS  Google Scholar 

  66. Zhao D, Qian X, Gu X, Jajja SA, Yang R. Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials. J Electron Packag. 2016;138:040802.

    Google Scholar 

  67. Min S, Blumm J, Lindemann A. A new laser flash system for measurement of the thermophysical properties. Thermochim Acta. 2007;455:46–9.

    CAS  Google Scholar 

  68. Parker JW, Jenkins JR. WADD Technical Report 65-91. Directorate of Materials and Processes, 1961.

  69. Parker WJ, Jenkins RJ, Butler CP, Abbott GL. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys. 1961;32:1679–84.

    CAS  Google Scholar 

  70. Vozár V, Hohenauer W. Uncertainty of thermal diffusivity measurements using the laser flash method. Int J Thermophys. 2005;26:1899–915.

    Google Scholar 

  71. Degiovanni A, Andre S, Maillet D. Phonic conductivity measurement of a semi-transparent material. In: Tong TW, editor. Thermal conductivity 22, Chap 5. London: Academic Press; 1969. p. 253–75.

    Google Scholar 

  72. Cowan RD. Pulse method of measuring thermal diffusivity at high temperatures. Appl Phys. 1963;34:926–7.

    CAS  Google Scholar 

  73. Mehling H, Hautzinger G, Nilsson O, Fricke J, Hofmann R, Hahn O. Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new analytical model. Int J Thermophys. 1998;19:941–9.

    CAS  Google Scholar 

  74. Whittington AG, Hofmeister AM, Nabelek PI. Temperature dependent thermal diffusivity of Earth’s crust and implications for magmatism. Nature. 2009;458:319–21.

    CAS  PubMed  Google Scholar 

  75. Brauer H, Dusza L, Schulz B. New laser flash equipment LFA 427. Interceram. 1992;41:489–92.

    Google Scholar 

  76. Criss EM, Hofmeister AM. Isolating lattice from electronic contributions in thermal transport measurements of metals and alloys and a new model. Int J Mod Phys B. 2017;31:175020–75.

    Google Scholar 

  77. Vozár L, Hohenauer W. Flash method of measuring the thermal diffusivity: a review. High Temp High Press. 2003;35–36:253–64.

    Google Scholar 

  78. Wei G, Zhang X, Yu F, Chen K. Thermal diffusivity measurements on insulation materials with the laser flash method. Int J Thermophys. 2006;27:235–43.

    CAS  Google Scholar 

  79. Schoderböck P, Klocker H, SiglL S, Seeber G. Evaluation of the thermal diffusivity of thin specimens from laser flash data. Int J Thermophys. 2009;30:599–607.

    Google Scholar 

  80. Hartlieb P, Toifl M, Kuchar F, Meisels R, Antretter T. Thermo-physical properties of selected hard rocks and their relation to microwave-assisted comminution. Miner Eng. 2016;91:34–41.

    CAS  Google Scholar 

  81. Merriman JD, Hofmeister AM, Roy DJ, Whittington AG. Temperature-dependent thermal transport properties of carbonate minerals and rocks. Geosphere. 2018;14:1961–87.

    Google Scholar 

  82. Kallaev SN, Gadzhiev GG, Kamilov IK, Omarov ZM, Sadykov SA. Thermal conductivity and thermal expansion coefficient anomaly of segno-ceramics on the bases of PZT. Izv Russ Acad Sci Ser Phys. 2004;68:981–3.

    Google Scholar 

  83. Kallaev SN, Gadzhiev GG, Kamilov IK, Omarov ZM, Sadykov SA, Raznichenko LA. Thermohysical properties of segno-ceramics on the bases of PZT. Russ Solid State Phys. 2006;6:1099–101.

    Google Scholar 

  84. ASTM E1461-13 Standard Test Method for Thermal Diffusivity by the Flash Method, 2013.

  85. ISO 22007-4:2008. Plastics—determination of thermal conductivity and thermal diffusivity. Part 4: laser flash method, 2008.

  86. Seipold U. The heat transport in crystalline rocks under the conditions of the continental crust. Scientific technical report STR01/13, Potsdam: GFZ; 2001

  87. Osako M, Ito E, Yoneda A. Simultaneous measurements of thermal conductivity and thermal diffusivity for garnet and olivine under high pressure. Phys Earth Planet Inter. 2004;143–144:311–20.

    Google Scholar 

  88. Tommasi A, Gilbert B, Seipold U, Mainprice D. Anisotropy of thermal diffusivity in the upper mantle. Nature. 2001;411:783–6.

    CAS  PubMed  Google Scholar 

  89. Vosteen HD, Schellschmidt R. Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock. Phys Chem Earth. 2003;28:499–509.

    Google Scholar 

  90. Hofmeister AM. Thermal conductivity of Earth’s deepest mantle. In: Maruyama S, Kavato SI, Windley BF, editors. Superlumes: byond plate tectonics DA Yuen. Dordrecht: Springer; 2007. p. 269–92.

    Google Scholar 

  91. Hofmeister AM, Yuen DA. Critical phenomena in thermal conductivity: implications for lower mantle dynamics. J Geodyn. 2007;44:186–99.

    Google Scholar 

  92. Davis MG, Chapman DS, Van Wagoner TM, Armstrong PA. Thermal conductivity 375 anisotropy of metasedimentary and igneous rocks. J Geophys Res. 2007;112(B5):B05216-1–7.

    Google Scholar 

  93. Pribnow DFC, Davis EE, Fisher AT. Borehole heat flow along the eastern flank of the 423 Juan de Fuca Ridge, including effects of anisotropy and temperature dependence of sediment 424 thermal conductivity. Ottawa: Geological Survey of Canada; 2000.

    Google Scholar 

  94. Siegesmund S, Ullemeyer K, Weiss T, Tschegg EK. Physical weathering of marbles caused by anisotropic thermal expansion. Int J Earth Sci. 2000;89:170–82.

    CAS  Google Scholar 

  95. Hofmeister AM. Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science. 1999;283:1699–706.

    CAS  PubMed  Google Scholar 

  96. Hofmeister AM. Thermal conductivity of spinels and olivines from vibrational spectroscopy at ambient conditions. Am Mineral. 2001;86:1188–208.

    CAS  Google Scholar 

  97. Geisting PA, Hofmeister AM, Wopenka B, Gwanmesia GD, Jolliff BL. Thermal conductivity and thermodynamics of majoritic garnets: implications for the transition zone. Earth Planet Sci Lett. 2004;218:45–56.

    Google Scholar 

  98. Branlund JM, Hofmeister AM. Factors affecting heat transfer in SiO2 solids. Am Mineral. 2008;93:1620–9.

    CAS  Google Scholar 

  99. Yu X, Hofmeister AM. Thermal diffusivity of alkali and silver halides. J Appl Phys. 2011;109:033516-1–-20.

    Google Scholar 

  100. Hofmeister AM. Thermal diffusivity data on nonmetallic crystalline solids from laser-flash analysis. In: Measurements, mechanisms, and models of heat transport. Elsevier; 2019, Chap 7, pp 202–50.

  101. Krupka MK, Robie RA, Hemingway BS. High-temperature heat capacities of corundum, pericllase, anortite, CaAl2Si2O8 glas, muscovite, pyrophyllite, KAlSi3O8 glas, grossular, and NaAlSi3O8 glass. Am Mineral. 1979;64:86–101.

    CAS  Google Scholar 

  102. Berman RG, Brown TH. Heat capacity of minerals in the system Na2O–K2O–CaOMgO–FeO–Fe2O2–Al2O3–SiO2–TiO2–H2O–CO2: representation, estimation, and high temperature extrapolation. Contrib Mineral Petrol. 1985;89:168–83.

    CAS  Google Scholar 

  103. Robie RA, Hemingway BS. Thermodynamic properties of minerals and related substances at 298.15 K and 1 Bar (105 Pascals) pressure and higher temperatures. US Geological Survey Bulletin 2131, Washington: DC; 1995.

  104. Hofmeister AM, Mao HK. Evaluation of shear moduli and other properties of silicates with the spinel structure from IR spectroscopy. Am Mineral. 2001;86:622–9.

    CAS  Google Scholar 

Download references

Acknowledgements

The study has been support by Russian Scientific Foundation (Project # 19-08-00352).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilmutdin M. Abdulagatov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 68 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulagatov, I.M., Abdulagatova, Z.Z., Kallaev, S.N. et al. Heat capacity and thermal diffusivity of heavy oil saturated rock materials at high temperatures. J Therm Anal Calorim 142, 519–534 (2020). https://doi.org/10.1007/s10973-020-09765-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09765-x

Keywords

Navigation