Skip to main content
Log in

A comparative study of heat transfer analysis on ethylene glycol or engine oil as base fluid with gold nanoparticle in presence of thermal radiation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present work addresses to analyse the heat transfer enhancement of unsteady laminar incompressible MHD flow of couple stress nanofluid through a rectangular squeezing channel with thermal radiation. The governing transport equations are reduced into an ordinary differential equation using relevant similar transformations and then solved numerically with the shooting method Runge–Kutta fourth-order scheme. The results are sketched as two-dimensional graphs and explained in detail for flow and heat transfer with non-dimensional physical parameters. Further calculated the skin friction and heat transfer rates at the upper plate. The axial velocity of engine oil/ethylene glycol has been increased by β and Da−1 towards the centre of the channel decreased for squeezing, and it is opposite for the separation case. The numerical results have good agreement with published work for temperature profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

h :

Origin-to-wall distance \(\left( {\text{m}} \right),\;H\sqrt {\left( {1 - \alpha t} \right)}\)

α :

Wall motion parameter (s−1)

\(v_{\text{w}}\) :

Velocity of the wall (m s−1)

T r :

Reference temperature at the wall (℃)

T 0 :

Temparature (℃) at y = 0

ρ :

Density of the fluid (Kg m−3)

p :

Pressure (Kg m s−2)

μ :

Viscosity of the parameter (Kg m−1 s−1)

υ :

Kinematic viscosity (m s−1)

σ :

Electrical conductivity of the fluid (S m−1)

B 0 :

Magnetic field strength (Wb m−2)

c :

Specific heat constant (J Kg−1 K−1)

k 1 :

Thermal conductivity (W m−1 K−1)

\(\bar{J}\) :

Current density (A m−2),

\(\bar{B}\) :

Magnetic field vector (T)

\(\bar{E}\) :

Electric field (V m−1)

\(\mu_{e}\) :

Magnetic permeability (NA−2)

\(\rho_{\text{f}}\) :

Density of the base fluid

\(\rho_{\text{p}}\) :

Density of the nanoparticle

\(\rho_{\text{nf}}\) :

Density of the nanofluid

\(\upsilon\) :

Kinematic viscosity

\(\mu_{\text{f}}\) :

Dynamic viscosity of the nanofluid

f:

Fluid

p:

Solid

nf:

Nanofluid

References

  1. Gupta PS, Gupta AS. squeezing flow between parallel plates. Wear. 1977;45(2):177–85.

    Article  CAS  Google Scholar 

  2. Bujurke NM, Achar PK, Pai NP. Computer extended series for squeezing flow between plates. Fluid Dyn Res. 1995;16(2–3):173.

    Article  Google Scholar 

  3. Khan U, Ahmed N, Khan SI, Zaidi ZA, Xiao-Jun Y, Mohyud-Din ST. On unsteady two-dimensional and axisymmetric squeezing flow between parallel plates. Alex Eng J. 2014;53(2):463–8.

    Article  Google Scholar 

  4. Mustafa M, Hayat T, Obaidat S. On heat and mass transfer in the unsteady squeezing flow between parallel plates. Meccanica. 2012;47(7):1581–9.

    Article  Google Scholar 

  5. Shah RA, Anjum MN, Khan MS. Analysis of unsteady squeezing flow between two porous plates with variable magnetic field. Int J Adv Eng Man Sci. 2017;3(1):189.

    Google Scholar 

  6. Ahmed N, Khan U, Khan SI, Bano S, Mohyud-Din ST. Effects on magnetic field in squeezing flow of a Casson fluid between parallel plates. J King Saud Univ Sci. 2017;29(1):119–25.

    Article  Google Scholar 

  7. Reddy GK, Yarrakula K, Raju CSK, Rahbari A. Mixed convection analysis of variable heat source/sink on MHD Maxwell, Jeffrey, and Oldroyd-B nanofluids over a cone with convective conditions using Buongiorno’s model. J Thermal Anal Calorim. 2018;132(3):1995–2002.

    Article  Google Scholar 

  8. Stefan MJ. Versuch Uber die scheinbare adhesion, Akademie der Wissenschaften in Wien. Mathwmatisch–Naturwissenschaftliche. 1874;69:713–21.

    Google Scholar 

  9. Sheikholeslami M, Ganji DD, Ashorynejad HR. Investigation of squeezing unsteady nanofluid flow using ADM. Powder Techol. 2013;2013(239):259–65.

    Article  Google Scholar 

  10. Pourmehran O, Rahimi-Gorji M, Gorji-Bandpy M, Ganji DD. Analytical investigation of squeezing unsteady nanofluid flow between parallel plates by LSM and CM. Alex Eng J. 2015;54(1):17–26.

    Article  Google Scholar 

  11. Domairry G, Hatami M. Squeezing Cu–water nanofluid flow analysis between parallel plates by DTM—Padé Method. J Mol Liq. 2014;2014(193):37–44.

    Article  Google Scholar 

  12. Lu L, Liu LH, Li XX. Investigation of Squeezing Unsteady Nanofluid Flow Using the Modified Decomposition Method, CMES: Comp. Mod Eng Sci. 2014;101(1):1–15.

    Google Scholar 

  13. Khan U, Ahmed N, Asadullah M, Mohyud-din ST. Effects of viscous dissipation and slip velocity on two-dimensional and axisymmetric squeezing flow of Cu-water and Cu-kerosene nanofluids. Propulsion Power Res. 2015;4(1):40–9.

    Article  Google Scholar 

  14. Acharya N, Das K, Kundu PK. The squeezing flow of Cu-water and Cu-kerosene nanofluids between two parallel plates. Alex Eng J. 2016;55(2):1177–86.

    Article  Google Scholar 

  15. Sheikholeslami M, Ghasemi A. Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM. Int J Heat Mass Transf. 2018;2018(123):418–31.

    Article  Google Scholar 

  16. Sheikholeslami Mohsen, Seyednezhad Mohadeseh. Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. Int J Heat Mass Transf. 2018;2018(120):772–81.

    Article  Google Scholar 

  17. Sheikholeslami M, Rizwan-ul H, Ahmad S, Li Z. Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int J Heat Mass Transf. 2019;2019(130):1322–42.

    Article  Google Scholar 

  18. Sheikholeslami M. Finite element method for PCM solidification in existence of CuO nanoparticles. J Mol Liq. 2018;2018(265):347–55.

    Article  Google Scholar 

  19. Sheikholeslami M, Jafaryar M, Li Z. Nanofluid turbulent convective flow in a circular duct with helical turbulators considering CuO nanoparticles. Int J Heat Mass Transf. 2018;2018(124):980–9.

    Article  Google Scholar 

  20. Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;2019(344):319–33.

    Article  Google Scholar 

  21. Atlas M, Haq RU, Mekkaoui T. Active and zero flux of nanoparticles between a squeezing channel with thermal radiation effects. J Mol Liq. 2016;2016(223):289–98.

    Article  Google Scholar 

  22. Sheikholeslami M, Mikhail AS, Ahmad S, Iskander T. Simulation of nanoliquid thermogravitational convection within a porous chamber imposing magnetic and radiation impacts. Physica A Stat Mech Appl. 2020;146:124058.

    Article  Google Scholar 

  23. Madaki AG, Roslan R, Mohamed M, Kamardan MG. Analytical solutions of squeezing unsteady nanofluid flow in the presence of thermal radiation. J Comput Sci Comput Math. 2016;2016(6):451–63.

    Google Scholar 

  24. Dogonchi AS, Divsalar K, Ganji DD. Flow and heat transfer of MHD nanofluid between parallel plates in the presence of thermal radiation. Comput Methods Appl Mech Eng. 2016;2016(310):58–76.

    Article  Google Scholar 

  25. Hayat T, Jabeen S, Shafiq A, Alsaedi A. Radiative squeezing flow of second grade fluid with convective boundary conditions. PLoS ONE. 2016;11(4):e0152555.

    Article  CAS  Google Scholar 

  26. Hayat T, Qayyum A, Alsaadi F, Awais M, Dobaie AM. Thermal radiation effects in squeezing flow of a Jeffery fluid. Euro Phys J Plus. 2013;128(8):85.

    Article  Google Scholar 

  27. Kandasamy R, Muhaimin I, Khamis AB, Bin RR. Unsteady Hiemenz flow of Cu-nanofluid over a porous wedge in the presence of thermal stratification due to solar energy radiation: Lie group transformation. Int J Ther Sci. 2013;2013(65):196–205.

    Article  Google Scholar 

  28. Palaniammal S, Saritha K. Heat and mass transfer of a casson nanofluid flow over a porous surface with dissipation, radiation, and chemical reaction. IEEE Trans Nanotechol. 2017;16(6):909–18.

    Article  CAS  Google Scholar 

  29. Kambhatla PK, Ojjela O, Das KS. Viscoelastic model of ethylene glycol with temperature – dependent thermophysical properties. J Anal Calorimer. 2019;135(2):1257–68.

    Article  CAS  Google Scholar 

  30. Aman S, Khan I, Ismail Z, Salleh MZ. Impacts of gold nanoparticles on MHD mixed convection Poiseuille flow of nanofluid passing through a porous medium in the presence of thermal radiation, thermal diffusion and chemical reaction. Neural Comput Appl. 2018;30(3):789–97.

    Article  Google Scholar 

  31. Hayat T, Sajjad R, Alsaedi A, Muhammad T, Ellahi R. On squeezed flow of couple stress nanofluid between two parallel plates. Results Phys. 2017;19(11):553–61.

    Article  Google Scholar 

  32. Awad F, Haroun NAH, Sibanda P, Khumalo M. On couple stress effects on unsteady nanofluid flow over stretching surfaces with vanishing nanoparticle flux at the wall. J Appl Fluid Mech. 2016;9(4):1937–44.

    Google Scholar 

  33. Adesanya S, Ogunseye H, Falade J, Lebelo RS. Thermodynamic analysis for buoyancy-induced couple stress nanofluid flow with constant heat flux. Entropy. 2017;19(11):580.

    Article  Google Scholar 

  34. Khan NA, Sultan F, Riaz F, Jamil M. Investigation of combined heat and mass transfer between vertical parallel plates in a two-layer flow of couple stress nanofluid. Open Eng. 2016;6(1):35–43.

    Article  CAS  Google Scholar 

  35. Ramzan M. Influence of Newtonian heating on three dimensional MHD flow of couple stress nanofluid with viscous dissipation and joule heating. PLoS ONE. 2015;10(4):1–24.

    Article  Google Scholar 

  36. Opanuga AA, Gbadeyan JA, Iyase SA. Second law analysis of hydromagnetic couple stress fluid embedded in a non-darcian porous medium. Int J Appl Math. 2017;47(3):159.

    Google Scholar 

  37. Wang CY. The squeezing of a fluid between two plates. J Appl Mech. 1976;1976(43):579–83.

    Article  Google Scholar 

  38. Haq RU, Nadeem S, Khan ZH, Noor NFM. Convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes. Physica B Condens Matter. 2015;457:40–7.

    Article  Google Scholar 

  39. Mittal RC, Pandit S. Numerical simulation of unsteady squeezing nanofluid and heat flow between two parallel plates using wavelets. Int J Therm Sci. 2017;2017(118):410–22.

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (A.R) is grateful to the Defence Research and Development Organization (DRDO), Government of India for providing financial assistance in the form of Junior Research Fellowship (DIAT/F/Acad (PhD)/1613/15-52-09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Odelu Ojjela.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See (Fig. 8).

Fig. 8
figure 8

Flowchart of RK-4 method resolving system \(\left( {{\text{i}}.{\text{e}}\,X\left( {x_{1} ,x_{2} ,x_{3} ,x_{4} ,x_{5} ,x_{6} ,x_{7} ,x_{8} } \right)} \right)\) of equations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raju, A., Ojjela, O. & Kambhatla, P.K. A comparative study of heat transfer analysis on ethylene glycol or engine oil as base fluid with gold nanoparticle in presence of thermal radiation. J Therm Anal Calorim 145, 2647–2660 (2021). https://doi.org/10.1007/s10973-020-09757-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09757-x

Keywords

Navigation