Skip to main content
Log in

Characterizing the effect of superabsorbent polymer content on internal curing process of cement paste using calorimetry and nuclear magnetic resonance methods

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Internal curing (IC) is used to mitigate autogenous shrinkage in low water-to-cement ratio (w/c) concrete. Although, superabsorbent polymers (SAP) have been shown to work well for IC, their effects on the kinetics of the cement chemical reaction and the amount of water they provide have not been fully quantified. An experimental program was performed using isothermal calorimetry and nuclear magnetic resonance (NMR) to study the behavior of cement paste with various levels of IC using SAP. The results revealed that the higher the amount of IC the more susceptible the cement paste became to SAP overdosing resulting in a significant decrease in the heat of hydration (HOH) and therefore loss of IC efficiency. The mass of SAP to entrained water greater than 5% led to particles agglomeration and a 65% decrease in its IC efficiency. The HOH is observed to be linearly proportional to the entrained w/c, and that its development is limited by the initial porosity of the paste which controls the water diffusion from the SAP. The NMR signal corresponding to IC water showed that the SAP absorbs 4–7% more mixing water than initially estimated, and that pre-wetted SAP has larger amount of entrained water in comparison with dry SAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Tazawa E, Miyazawa S. Influence of cement and admixture on autogenous shrinkage of cement paste. Cement Concrete Res. 1995;25:281–7.

    Article  CAS  Google Scholar 

  2. Akcay B, Tasdemir MA. Optimisation of using lightweight aggregates in mitigating autogenous deformation of concrete. Constr Build Mater. 2009;23:353–63.

    Article  Google Scholar 

  3. Henkensiefken R, Bentz D, Nantung T, Weiss J. Volume change and cracking in internally cured mixtures made with saturated lightweight aggregate under sealed and unsealed conditions. Cement Concrete Compos. 2009;31:427–37.

    Article  CAS  Google Scholar 

  4. Shen D, Wang X, Cheng D, Zhang J, Jiang G. Effect of internal curing with super absorbent polymers on autogenous shrinkage of concrete at early age. Constr Build Mater. 2016;106:512–22.

    Article  CAS  Google Scholar 

  5. Zhang J, Wang J, Ding X. Calculation of shrinkage stress in concrete structures with impact of internal curing. Eng Fract Mech. 2018;192:54–76.

    Article  Google Scholar 

  6. Philleo RE. Concrete science and reality. In: Skalny J, Mindess S, editors. Material science concrete II. Westerville: American Ceramic Society; 1991. p. 1–8.

    Google Scholar 

  7. Bentz DP, Snyder KA. Protected paste volume in concrete. Cement Concrete Res. 1999;29:1863–7.

    Article  CAS  Google Scholar 

  8. Castro J, Varga ID, Weiss J. Using isothermal calorimetry to assess the water absorbed by fine LWA during mixing. J Mater Civ Eng. 2012;24:996–1005.

    Article  Google Scholar 

  9. Wang XY, Park KB. Analysis of the compressive strength development of concrete considering the interactions between hydration and drying. Cement Concrete Res. 2017;102:1–15.

    Article  CAS  Google Scholar 

  10. de Sensale GR, Goncalves AF. Effects of fine LWA and SAP as internal water curing agents. Int J Concr Struct Mater. 2014;8:229–38.

    Article  Google Scholar 

  11. Jensen OM, Hansen PF. Water-entrained cement-based materials. Cement Concrete Res. 2001;31:647–54.

    Article  CAS  Google Scholar 

  12. Liu J, Ou Z, Mo J, Wang Y, Wu H. The effect of SCMs and SAP on the autogenous shrinkage and hydration process of RPC. Constr Build Mater. 2017;155:239–49.

    Article  CAS  Google Scholar 

  13. Tu W, Zhu Y, Fang G, Wang X, Zhang M. Internal curing of alkali-activated fly ash-slag pastes using superabsorbent polymer. Cement Concrete Res. 2019;116:179–90.

    Article  CAS  Google Scholar 

  14. Esteves LP. Recommended method for measurement of absorbency of superabsorbent polymers in cement-based materials. Mater Struct. 2015;48:2397–401.

    Article  CAS  Google Scholar 

  15. Johansen NA, Millard MJ, Mezencevova A, Garas VY, Kurtis KE. New method for determination of absorption capacity of internal curing agents. Cement Concrete Res. 2009;39:65–8.

    Article  CAS  Google Scholar 

  16. Mönnig S. Water saturated super-absorbent polymers used in high strength concrete. Otto-Graf J. 2005;16:193–202.

    Google Scholar 

  17. Justs J, Wyrzykowski M, Bajare D, Lura P. Internal curing by superabsorbent polymers in ultra-high performance concrete. Cement Concrete Res. 2015;76:82–90.

    Article  CAS  Google Scholar 

  18. Kočí J, Fořt J, Mildner M, Černý R. Effect of incorporated superabsorbent polymers on workability and hydration process in cement-based materials. In: International multidisciplinary scientific geoconference. Surveying, geology and mining, ecology and management SGEM. Albena, Bulgaria; 2019; pp. 99–106.

  19. Farzanian K, Pimenta Teixeira K, Perdigão Rocha I, De Sa Carneiro L, Ghahremaninezhad A. The mechanical strength, degree of hydration, and electrical resistivity of cement pastes modified with superabsorbent polymers. Constr Build Mater. 2016;109:156–65.

    Article  CAS  Google Scholar 

  20. Almeida FCR, Klemm AJ. Efficiency of internal curing by superabsorbent polymers (SAP) in PC-GGBS mortars. Cement Concrete Compos. 2018;88:41–51.

    Article  CAS  Google Scholar 

  21. Justs J, Wyrzykowski M, Winnefeld F, Bajare D, Lura P. Influence of superabsorbent polymers on hydration of cement pastes with low water-to-binder ratio. J Therm Anal Calorim. 2014;115:425–32.

    Article  CAS  Google Scholar 

  22. Canadian Standards Association. Cementitious materials compendium. Toronto: CSA Group; 2018.

    Google Scholar 

  23. Taylor HFW. Cement chemistry. 2nd ed. London: Thomas Telford; 1997.

    Book  Google Scholar 

  24. Schröfl C, Snoeck D, Mechtcherine V. A review of characterisation methods for superabsorbent polymer (SAP) samples to be used in cement-based construction materials: report of the RILEM TC 260-RSC. Mater Struct Constr. 2017;50:1–19.

    Article  Google Scholar 

  25. Snoeck D, Van Tittelboom K, Steuperaert S, Dubruel P, De Belie N. Self-healing cementitious materials by the combination of microfibres and superabsorbent polymers. J Intell Mater Syst Struct. 2014;25:13–24.

    Article  CAS  Google Scholar 

  26. ASTM Committee C09.48. ASTM C1679-14: Standard practice for measuring hydration kinetics of hydraulic cementitious mixtures using isothermal calorimetry. Annu B ASTM Stand Vol 0401. 2014.

  27. Meiboom S, Gill D. Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum. 1958;29:688–91.

    Article  CAS  Google Scholar 

  28. Box GE, Hunter JS, Hunter WG. Statistics for Experimenters. Hoboken: Wiley; 2005.

    Google Scholar 

  29. Bentz DP, Peltz MA, Winpigler J. Early-age properties of cement-based materials II: Influence of water-to-cement ratio. J Mater Civ Eng. 2009;21:512–7.

    Article  CAS  Google Scholar 

  30. Hu J, Ge Z, Wang K. Influence of cement fineness and water-to-cement ratio on mortar early-age heat of hydration and set times. Constr Build Mater. 2014;50:657–63.

    Article  Google Scholar 

  31. Scrivener K, Snellings R, Lothenbach B, editors. A practical guide to microstructural analysis of cementitious materials. Boca Raton: CRC Press; 2018.

    Google Scholar 

  32. Muller ACA, Scrivener KL, Gajewicz AM, McDonald PJ. Use of bench-top NMR to measure the density, composition and desorption isotherm of C–S–H in cement paste. Microporous Mesoporous Mater. 2013;178:99–103.

    Article  CAS  Google Scholar 

  33. Wyrzykowski M, Gajewicz-Jaromin AM, McDonald PJ, Dunstan DJ, Scrivener KL, Lura P. Water redistribution–microdiffusion in cement paste under mechanical loading evidenced by 1 H NMR. J Phys Chem C. 2019;123:16153–63.

    Article  CAS  Google Scholar 

  34. Monteiro PJM, Geng G, Marchon D, Li J, Alapati P, Kurtis KE, et al. Advances in characterizing and understanding the microstructure of cementitious materials. Cement Concrete Res. 2019;124:105806.

    Article  CAS  Google Scholar 

  35. Mihaljevic SN, Chidiac SE, Krachkovskiy SA, Goward GR. Efficiency measure of SAP as IC material for cement using NMR-MRI. Manuscr Submitt Publication.

  36. Powers TC. A discussion of cement hydration in relation to the curing of concrete. In: Proceedings twenty—seventh annual meeting highway research board. Washington, D.C.: Highway Research Board; 1948. pp. 178–88.

  37. Bažant ZP, Najjar LJ. Nonlinear water diffusion in nonsaturated concrete. Matériaux Constr. 1972;5:3–20.

    Article  Google Scholar 

  38. Kim JK, Lee CS. Moisture diffusion of concrete considering self-desiccation at early ages. Cement Concrete Res. 1999;29:1921–7.

    Article  CAS  Google Scholar 

  39. van Breugel K. Numerical simulation of hydration and microstructural development in hardening cement paste (I): theory. Cem. Concr. Res. 1995;25:522–30.

    Article  Google Scholar 

  40. Schindler AK, Folliard KJ. Heat of hydration models for cementitious materials. ACI Mater J. 2005;102:24–33.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank NSERC for funding this research and Dr. Alexander Assmann of BASF Construction Solutions GmbH, Trostberg, Germany, for providing the SAP material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Chidiac.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chidiac, S.E., Mihaljevic, S.N., Krachkovskiy, S.A. et al. Characterizing the effect of superabsorbent polymer content on internal curing process of cement paste using calorimetry and nuclear magnetic resonance methods. J Therm Anal Calorim 145, 437–449 (2021). https://doi.org/10.1007/s10973-020-09754-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09754-0

Keywords

Navigation