Skip to main content
Log in

Experimental study on convective heat transfer and entropy generation of carbon black nanofluid turbulent flow in a helical coiled heat exchanger

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The convective heat transfer coefficient (CHTC) of a fluid is one of the most effective factors on the performance of a fluid in heat transfer equipment. Due to the higher conductivity of metals than that of liquids, solid metal particles can be mixed in a fluid to improve the CHTC of it. According to recent advances in nanotechnology, using nanofluids is one of the popular methods to increase heat transfer in heat exchangers. In this paper, the main influence factors on increasing the CHTC of the nanofluid, including flow rate and nanofluid concentration, were investigated. For this study, all tests were carried out in the Reynolds range of 10,000 to 31,500 which are definitely in turbulent regime. Furthermore, in order to reduce the number of tests, Design–Expert software using central composite method has been employed. The results indicate that increasing the Reynolds leads to an increase in the CHTC and a decrease in the friction factor. In addition, it was shown that at a constant Reynolds, carbon nanofluid with concentration of 0.21 mass% has about 40.7% higher CHTC than pure water. The variation of friction factor was investigated too and was found that this parameter is increased by increasing the nanofluid concentration and decreasing the Reynolds number. The entropy generation due to heat transfer and friction factor was assessed and finally showed that in 0.21 mass% where the maximum Nusselt is available, the entropy generation is the lowest. By calculating the Bejan number, the portions of heat and friction factors in generating entropy were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Noghrehabadi A, Saffarian MR, Pourrajab R, Ghalambaz M. Entropy analysis for nanofluid flow over a stretching sheet in the presence of heat generation/absorption and partial slip. J Mech Sci Technol. 2013;27(3):927–37.

    Google Scholar 

  2. Firoozzadeh M, Shiravi AH, Shafiee M. Experimental study on photovoltaic cooling system integrated with carbon nano fluid. J Solar Energy Res. 2018;3(4):287–92.

    Google Scholar 

  3. Saffarian MR, Moravej M, Doranehgard MH. Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid. Renew Energy. 2020;146:2316–29.

    CAS  Google Scholar 

  4. Firoozzadeh M, Shiravi AH, Shafiee M. Different methods of using phase change materials (PCMs) as coolant of photovoltaic modules: a review. J Energy Manag Technol. 2020;4(3):30–6. https://doi.org/10.22109/jemt.2020.174137.1161.

    Article  Google Scholar 

  5. AL-Musawi AIA, Taheri A, Farzanehnia A, Sardarabadi M, Passandideh-Fard M. Numerical study of the effects of nanofluids and phase-change materials in photovoltaic thermal (PVT) systems. J Therm Anal Calorim. 2019;137(2):623–36.

    CAS  Google Scholar 

  6. Moravej M, Saffarian MR, Li LK, Doranehgard MH, Xiong Q. Experimental investigation of circular flat-panel collector performance with spiral pipes. J Therm Anal Calorim. 2020;140:1229–36. https://doi.org/10.1007/s10973-019-08879-1.

    Article  CAS  Google Scholar 

  7. Poshtiri AH, Taghiyari HR, Karimi AN. Fire-retarding properties of nano-wollastonite in solid wood. Philipp Agric Sci. 2014;97(1):52–9.

    Google Scholar 

  8. Mousavi F, Taherpour AA. Sensitization of copper oxide nanoparticles by Victoria Blue R for dye-sensitized solar cells: a DFT study. Adv Nanochem. 2019;1(1):12–6.

    Google Scholar 

  9. Seyfoori A, Naghib SM, Molaabasi F. Inhibitory effect comparison of the needle, spherical, and mesoporous hydroxyapatite nanoparticles on MCF-7 breast cancer cell line proliferation: an in vitro assay. Adv Nanochem. 2020;2(1):11–4.

    Google Scholar 

  10. Taherpour AA, Hassani Daramroudi A, Kariminya R. Theoretical study of diffusion flow of anticancer medicines through single-wall armchair (10, 10) carbon nanotube. Adv Nanochem. 2019;1(2):56–61.

    Google Scholar 

  11. Firouzfar E, Soltanieh M, Noie S, Saidi M. Investigation of heat pipe heat exchanger effectiveness and energy saving in air conditioning systems using silver nanofluid. Int J Environ Sci Technol. 2012;9(4):587–94.

    CAS  Google Scholar 

  12. Xian HW, Sidik NAC, Najafi G. Recent state of nanofluid in automobile cooling systems. J Therm Anal Calorim. 2019;135(2):981–1008.

    CAS  Google Scholar 

  13. Eastman JA, Choi S, Li S, Yu W, Thompson L. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett. 2001;78(6):718–20.

    CAS  Google Scholar 

  14. Jung J-Y, Oh H-S, Kwak H-Y, editors. Forced convective heat transfer of nanofluids in microchannels. In: ASME 2006 International Mechanical Engineering Congress and Exposition; 2006: American Society of Mechanical Engineers.

  15. Yu W, Xie H, Chen L, Li Y. Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid. Thermochim Acta. 2009;491(1–2):92–6.

    CAS  Google Scholar 

  16. Kasaeian AB, Nasiri S. Convection heat transfer modeling of nano-fluid Tio2 using different viscosity theories. Int J Nanosci Nanotechnol. 2015;11(1):45–51.

    Google Scholar 

  17. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf Int J. 1998;11(2):151–70.

    CAS  Google Scholar 

  18. Shiravi AH, Firoozzadeh M, Bostani H, Shafiee M, Bozorgmehrian M. Experimental study on carbon nanofluid pressure drop and pumping power. Adv Nanochem. 2020;2(1):27–31. https://doi.org/10.22126/anc.2019.4418.1015.

    Article  Google Scholar 

  19. Xuan Y, Li Q. Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf. 2003;125(1):151–5.

    CAS  Google Scholar 

  20. Haghighi EB, Saleemi M, Nikkam N, Khodabandeh R, Toprak MS, Muhammed M, et al. Accurate basis of comparison for convective heat transfer in nanofluids. Int Commun Heat Mass Transf. 2014;52:1–7.

    CAS  Google Scholar 

  21. Fotukian S, Esfahany MN. Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube. Int Commun Heat Mass Transf. 2010;37(2):214–9.

    CAS  Google Scholar 

  22. Maı̈ga SEB, Nguyen CT, Galanis N, Roy G. Heat transfer behaviours of nanofluids in a uniformly heated tube. Superlattices Microstruct. 2004;35(3):543–57.

    Google Scholar 

  23. El Bécaye MS, Tam Nguyen C, Galanis N, Roy G, Maré T, Coqueux M. Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension. Int J Numer Methods Heat Fluid Flow. 2006;16(3):275–92.

    Google Scholar 

  24. Behzadmehr A, Saffar-Avval M, Galanis N. Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach. Int J Heat Fluid Flow. 2007;28(2):211–9.

    CAS  Google Scholar 

  25. Bahiraei M, Mazaheri N, Bakhti A. Irreversibility characteristics of nanofluid flow under chaotic advection in a minichannel for different nanoparticle types. J Taiwan Inst Chem Eng. 2018;88:25–36.

    CAS  Google Scholar 

  26. Karami M, Shirani E, Avara A. Analysis of entropy generation, pumping power, and tube wall temperature in aqueous suspensions of alumina particles. Heat Transf Res. 2012;43(4):327–42. https://doi.org/10.1615/HeatTransRes.2012004077.

    Article  Google Scholar 

  27. Falahat A. Entropy generation analysis of nanofluid flow in Coiled tube heat exchanger under laminar flow. Elixir Mech Eng. 2012;51:10674–6.

    Google Scholar 

  28. Zamzamian A. Entropy generation analysis of EG—Al2O3 nanofluid flows through a helical pipe. Int J Nanosci Nanotechnol. 2014;10(2):103–10.

    Google Scholar 

  29. Khorasanizadeh H, Nikfar M, Amani J. Entropy generation of Cu–water nanofluid mixed convection in a cavity. Eur J Mech B Fluids. 2013;37:143–52. https://doi.org/10.1016/j.euromechflu.2012.09.002.

    Article  Google Scholar 

  30. Mahian O, Kianifar A, Kleinstreuer C, Moh’d AA-N, Pop I, Sahin AZ, et al. A review of entropy generation in nanofluid flow. Int J Heat Mass Transf. 2013;65:514–32.

    CAS  Google Scholar 

  31. Falahat A, Shabani M, Saffarian MR. Entropy generation of pseudo-plastic non-Newtonian nanofluids in circular duct under constant wall temperature. J Mech Eng Technol. 2018;10(1):1–10.

    Google Scholar 

  32. Malvandi A, Ganji DD. Fully developed flow and heat transfer of nanofluids inside a vertical annulus. J Braz Soc Mech Sci Eng. 2015;37(1):141–7. https://doi.org/10.1007/s40430-014-0139-x.

    Article  CAS  Google Scholar 

  33. Hussien AA, Yusop NM, Moh’d AA-N, Abdullah MZ, Janvekar AA, Elnaggar MH. Numerical study of heat transfer enhancement using Al2O3–graphene/water hybrid nanofluid flow in mini tubes. Iran J Sci Technol Trans A Sci. 2019;43(4):1989–2000.

    Google Scholar 

  34. Hussien AA, Yusop NM, Abdullah MZ, Al-Nimr MDA, Khavarian M. Study on convective heat transfer and pressure drop of MWCNTs/water nanofluid in mini-tube. J Therm Anal Calorim. 2019;135(1):123–32. https://doi.org/10.1007/s10973-018-7234-7.

    Article  CAS  Google Scholar 

  35. Alempour SM, Arani AAA, Najafizadeh MM. Numerical investigation of nanofluid flow characteristics and heat transfer inside a twisted tube with elliptic cross section. J Therm Anal Calorim. 2020:1–21.

  36. Raei B, Shahraki F, Jamialahmadi M, Peyghambarzadeh SM. Experimental study on the heat transfer and flow properties of γ-Al2O3/water nanofluid in a double-tube heat exchanger. J Therm Anal Calorim. 2017;127(3):2561–75. https://doi.org/10.1007/s10973-016-5868-x.

    Article  CAS  Google Scholar 

  37. Safi M, Ghozatloo A, Hamidi A, Shariaty-Niassar M. Calculation of heat transfer coefficient of MWCNT-TiO2 nanofluid in plate heat exchanger. Int J Nanosci Nanotechnol. 2014;10(3):153–62.

    Google Scholar 

  38. Mahian O, Mahmud S, Heris SZ. Analysis of entropy generation between co-rotating cylinders using nanofluids. Energy. 2012;44(1):438–46.

    CAS  Google Scholar 

  39. Varzaneh AA, Toghraie D, Karimipour A. Comprehensive simulation of nanofluid flow and heat transfer in straight ribbed microtube using single-phase and two-phase models for choosing the best conditions. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08381-8.

    Article  Google Scholar 

  40. Sajid MU, Ali HM, Sufyan A, Rashid D, Zahid SU, Rehman WU. Experimental investigation of TiO2–water nanofluid flow and heat transfer inside wavy mini-channel heat sinks. J Therm Anal Calorim. 2019;137(4):1279–94. https://doi.org/10.1007/s10973-019-08043-9.

    Article  CAS  Google Scholar 

  41. Alipour Lalami A, Hassanzadeh Afrouzi H, Moshfegh A. Investigation of MHD effect on nanofluid heat transfer in microchannels. J Therm Anal Calorim. 2019;136(5):1959–75. https://doi.org/10.1007/s10973-018-7851-1.

    Article  CAS  Google Scholar 

  42. Akbari OA, Khodabandeh E, Kahbandeh F, Toghraie D, Khalili M. Numerical investigation of heat transfer of nanofluid flow through a microchannel with heat sinks and sinusoidal cavities by using novel nozzle structure. J Therm Anal Calorim. 2019;138(1):737–52.

    CAS  Google Scholar 

  43. Khorasanizadeh H, Sepehrnia M, Sadeghi R. Three dimensional investigations of inlet/outlet arrangements and nanofluid utilization effects on a triangular microchannel heat sink performance. Modares Mech Eng. 2016;16(12):27–38.

    Google Scholar 

  44. Salimi M, Peyghambarzadeh SM, Hashemabadi SH, Chabi A. Experimental investigation of convective heat transfer of Al2O3/water nanofluid through the micro heat exchanger. Modares Mech Eng. 2015;15(2):270–80.

    Google Scholar 

  45. Khorasanizadeh H, Amani J, Nikfar M. Numerical investigation of Cu–water nanofluid natural convection and entropy generation within a cavity with an embedded conductive baffle. Scientia Iranica. 2012;19(6):1996–2003.

    Google Scholar 

  46. Heris SZ, Pour MB, Mahian O, Wongwises S. A comparative experimental study on the natural convection heat transfer of different metal oxide nanopowders suspended in turbine oil inside an inclined cavity. Int J Heat Mass Transf. 2014;73:231–8.

    CAS  Google Scholar 

  47. Janssen L, Hoogendoorn C. Laminar convective heat transfer in helical coiled tubes. Int J Heat Mass Transf. 1978;21(9):1197–206.

    Google Scholar 

  48. Xin R, Ebadian M. The effects of Prandtl numbers on local and average convective heat transfer characteristics in helical pipes. J Heat Transf. 1997;119(3):467–73.

    CAS  Google Scholar 

  49. Mori Y, Nakayama W. Study on forced convective heat transfer in curved pipes: (3rd report, theoretical analysis under the condition of uniform wall temperature and practical formulae). Int J Heat Mass Transf. 1967;10(5):681–95. https://doi.org/10.1016/0017-9310(67)90113-5.

    Article  CAS  Google Scholar 

  50. Huang D, Fan S. Thermal conductivity of methane hydrate formed from sodium dodecyl sulfate solution. J Chem Eng Data. 2004;49(5):1479–82.

    CAS  Google Scholar 

  51. Absalan H, Zarei H. Synthesis of quaternary Cu(InxGa1–x) Se2 nanoparticles for photovoltaic applications using heating-up method. Iran J Sci Technol Trans A Sci. 2019;43(1):309–14.

    Google Scholar 

  52. Ghamari S, Nabitabar M, Ranjbar M. Study the properties of gadolinium-doped ceria nano-powders synthesized via sol–gel method with new precursors. Iran J Sci Technol Trans A Sci. 2018;42(4):1969–76.

    Google Scholar 

  53. Moghaddari M, Yousefi F. Syntheses, characterization, measurement and modeling viscosity of nanofluids containing OH-functionalized MWCNTs and their composites with soft metal (Ag, Au and Pd) in water, ethylene glycol and water/ethylene glycol mixture. J Therm Anal Calorim. 2019;135(1):83–96. https://doi.org/10.1007/s10973-018-7150-x.

    Article  CAS  Google Scholar 

  54. Shafiee M, Akbari A. Optimization of UHMWPE/graphene nanocomposite preparation by single-supported Ziegler–Natta catalytic system via RSM. Polym Adv Technol. 2018;29(7):1889–94.

    CAS  Google Scholar 

  55. Fadavipoor E, Badri R, Kiasat A, Sanaeishoar H. CuO supported 1-methyl-3-(3-(trimethoxysilyl) propyl) imidazolium chloride (MTMSP-Im/Cl) nanoparticles as an efficient simple heterogeneous catalysts for synthesis of β-azido alcohols. J Iran Chem Soc. 2019;16(7):1451–8.

    CAS  Google Scholar 

  56. Paryani S, Ramazani SAA. Investigation of the combination of TiO2 nanoparticles and drag reducer polymer effects on the heat transfer and drag characteristics of nanofluids. Can J Chem Eng. 2018;96(6):1430–40.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Hossein Shiravi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiravi, A.H., Shafiee, M., Firoozzadeh, M. et al. Experimental study on convective heat transfer and entropy generation of carbon black nanofluid turbulent flow in a helical coiled heat exchanger. J Therm Anal Calorim 145, 597–607 (2021). https://doi.org/10.1007/s10973-020-09729-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09729-1

Keywords

Navigation