Skip to main content
Log in

Micellar thermodynamics of voriconazole cyclodextrin-HS15 complex in glucose and NaCl solution

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The hydrodynamic radius and size dispersion of cyclodextrin-micelle complexes loaded with voriconazole in glucose and NaCl solutions were studied in detail by dynamic light scattering technique. The critical micelle concentration (CMC) was determined by surface tension, and the relevant air–water interface parameters and micellization thermodynamic parameters were calculated. In the environment of glucose and NaCl, the CMC value decreases with the increase in the concentration of the additive. Glucose forms more stable hydrophilic ends by binding to the micelle hydrophilic group. NaCl acts as a water structure building ion to provide hydrophobic force to the gum surfactant molecules and promote the formation of micelles. The results of insoluble particles are consistent with the CMC results, which further supports the results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bassetti M, Pecori D, Della Siega P, Corcione S, De Rosa FG. Current and future therapies for invasive aspergillosis. Pulm Pharmacol Ther. 2015;32:155–65. https://doi.org/10.1016/j.pupt.2014.06.002.

    Article  CAS  PubMed  Google Scholar 

  2. Jansook P, Ogawa N, Loftsson T. Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. Int J Pharm. 2018;535(1–2):272–84. https://doi.org/10.1016/j.ijpharm.2017.11.018.

    Article  CAS  PubMed  Google Scholar 

  3. Singh N, Sharma L. Synthesis and use of novel carbohydrate-derived non-ionic surfactants for enhancing the aqueous solubility of norfloxacin by micellization. Trends Carbohydr Res. 2016;8(3):33–7.

    CAS  Google Scholar 

  4. Ullah I, Baloch MK, Ullah I, Mustaqeem M. Enhancement in aqueous solubility of mefenamic acid using micellar solutions of various surfactants. J Solut Chem. 2014;43(8):1360–73. https://doi.org/10.1007/s10953-014-0217-9.

    Article  CAS  Google Scholar 

  5. Gokturk S, Caliskan E, Talman RY, Var U. A study on solubilization of poorly soluble drugs by cyclodextrins and micelles: complexation and binding characteristics of sulfamethoxazole and trimethoprim. Sci World J. 2012. https://doi.org/10.1100/2012/718791.

    Article  Google Scholar 

  6. Valero M, Castiglione F, Mele A, da Silva MA, Grillo I, Gonzalez-Gaitano G, et al. Competitive and synergistic interactions between polymer micelles, drugs, and cyclodextrins: the importance of drug solubilization locus. Langmuir. 2016;32(49):13174–86. https://doi.org/10.1021/acs.langmuir.6b03367.

    Article  CAS  PubMed  Google Scholar 

  7. Goncalves Silva E, de Souza Manilla, Silva S, Rodrigues Paula C, da Silva Ruiz L, Latercia Tranches Dias A. Modulatory effect of voriconazole on the production of proinflammatory cytokines in experimental cryptococcosis in mice with severe combined immunodeficiency. J Mycol Med. 2018;28(1):106–11. https://doi.org/10.1016/j.mycmed.2017.11.008.

    Article  CAS  PubMed  Google Scholar 

  8. Pilmis B, Garcia-Hermoso D, Alanio A, Catherinot E, Scemla A, Jullien V, et al. Failure of voriconazole therapy due to acquired azole resistance in Aspergillus fumigatus in a kidney transplant recipient with chronic necrotizing aspergillosis. Am J Transpl. 2018;18(9):2352–5. https://doi.org/10.1111/ajt.14940.

    Article  CAS  Google Scholar 

  9. Sun X, Yu Z, Cai Z, Yu L, Lv Y. Voriconazole composited polyvinyl alcohol/hydroxypropyl-beta-cyclodextrin nanofibers for ophthalmic delivery. PLoS ONE. 2016. https://doi.org/10.1371/journal.pone.0167961.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Miletic T, Kyriakos K, Graovac A, Ibric S. Spray-dried voriconazole-cyclodextrin complexes: solubility, dissolution rate and chemical stability. Carbohydr Polym. 2013;98(1):122–31. https://doi.org/10.1016/j.carbpol.2013.05.084.

    Article  CAS  PubMed  Google Scholar 

  11. Hoenigl M, Prattes J, Neumeister P, Woelfler A, Krause R. Real-world challenges and unmet needs in the diagnosis and treatment of suspected invasive pulmonary aspergillosis in patients with haematological diseases: an illustrative case study. Mycoses. 2018;61(3):201–5. https://doi.org/10.1111/myc.12727.

    Article  PubMed  Google Scholar 

  12. Angulo N. Description of adverse reactions found in patients who received voriconazole in the University IPS from the period of May 2013 to March 2015. Drug Saf. 2019;42(10):1240–1.

    Google Scholar 

  13. Zhang J, Zhu C, Hu L, Liu H, Pan H-C. Effect of freeze-drying process on the physical stability and properties of Voriconazole complex system. Dry Technol. 2018;36(7):871–8. https://doi.org/10.1080/07373937.2017.1362648.

    Article  Google Scholar 

  14. Bhattacharjee JK, Kaatze U. Fluctuations near the critical micelle concentration. I. Premicellar aggregation, relaxation rate, and isentropic compressibility. J Phys Chem B. 2013;117(14):3790–7. https://doi.org/10.1021/jp4011185.

    Article  CAS  PubMed  Google Scholar 

  15. Isabel Martin V, Jose Ostos F, Angulo M, Marquez AM, Lopez-Cornejo P, Lopez-Lopez M, et al. Host-guest interactions between cyclodextrins and surfactants with functional groups at the end of the hydrophobic tail. J Colloid Interface Sci. 2017;491:336–48. https://doi.org/10.1016/j.jcis.2016.12.040.

    Article  CAS  Google Scholar 

  16. Jiang BY, Du J, Cheng SQ, Pan JW, Zeng XC, Liu YJ, et al. Effects of cyclodextrins as additives on surfactant CMC. J Dispers Sci Technol. 2003;24(1):63–6. https://doi.org/10.1081/dis-120017944.

    Article  CAS  Google Scholar 

  17. Ghosh A, Seth SK, Purkayastha P. Controlled formation of hydrated micelles by the intervention of cyclodextrins. ChemPlusChem. 2019;84(1):130–5. https://doi.org/10.1002/cplu.201800559.

    Article  CAS  PubMed  Google Scholar 

  18. Benko M, Kiraly Z. Thermodynamics of inclusion complex formation of beta-cyclodextrin with a variety of surfactants differing in the nature of headgroup. J Chem Thermodyn. 2012;54:211–6. https://doi.org/10.1016/j.jct.2012.03.033.

    Article  CAS  Google Scholar 

  19. Levin AD, Nagaev AI, Sadagov AY. Determination of number density of particles together with measurement of their sizes by dynamic light scattering. Meas Tech. 2018;61(8):760–6. https://doi.org/10.1007/s11018-018-1498-y.

    Article  Google Scholar 

  20. Karraker KA, Radke CJ. Disjoining pressures zeta potentials and surface tensions of aqueous non-ionic surfactant/electrolyte solutions: theory and comparison to experiment. Adv Colloid Interface Sci. 2002;96(1–3):231–64. https://doi.org/10.1016/s0001-8686(01)00083-5.

    Article  CAS  PubMed  Google Scholar 

  21. Li X, He G, Zheng W, Xiao G. Study on conductivity property and microstructure of TritonX-100/alkanol/n-heptane/water microemulsion. Colloids Surf A. 2010;360(1–3):150–8. https://doi.org/10.1016/j.colsurfa.2010.02.026.

    Article  CAS  Google Scholar 

  22. Trujillo M, Schramm MP. Measuring critical micelle concentration as a function of cavitand additives using surface tension and dye micellization. Ronald E McNair Postbaccalaureate Achievement Program. 2010;14:155–68.

    PubMed  Google Scholar 

  23. Bielawska M, Chodzinska A, Janczuk B, Zdziennicka A. Determination of CTAB CMC in mixed water plus short-chain alcohol solvent by surface tension, conductivity, density and viscosity measurements. Colloids Surf A. 2013;424:81–8. https://doi.org/10.1016/j.colsurfa.2013.02.017.

    Article  CAS  Google Scholar 

  24. Mahajan S, Sharma R, Mahajan RK. Interactions of new 1,8-diazabicyclo 5.4.0 undec-7-ene (DBU) based surface active ionic liquids with amitriptyline hydrochloride: micellization and interfacial studies. Colloids Surf A. 2013;424:96–104. https://doi.org/10.1016/j.colsurfa.2013.02.032.

    Article  CAS  Google Scholar 

  25. Singh V, Tyagi R. Unique micellization and CMC aspects of gemini surfactant: an overview. J Dispers Sci Technol. 2014;35(12):1774–92. https://doi.org/10.1080/01932691.2013.856317.

    Article  CAS  Google Scholar 

  26. Hooshyar H, Sadeghi R. Influence of sodium salts on the micellization and interfacial behavior of cationic surfactant dodecyltrimethylammonium bromide in aqueous solution. J Chem Eng Data. 2015;60(4):983–92. https://doi.org/10.1021/je501058a.

    Article  CAS  Google Scholar 

  27. Wang W-T, Wang M, Zhang J, Liu H, Pan H-C. Cloud point thermodynamics of paclitaxel-loaded microemulsion in the presence of glucose and NaCl. Colloids Surf A. 2016;507:76–82. https://doi.org/10.1016/j.colsurfa.2016.07.086.

    Article  CAS  Google Scholar 

  28. Fini P, Castagnolo M. Determination of enthalpic interaction coefficients by ITC measurements. 2-hydroxypropyl-beta-cyclodextrin in aqueous solution of NaCl. J Therm Anal Calorim. 2001;66(1):91–102. https://doi.org/10.1023/a:1012435631222.

    Article  CAS  Google Scholar 

  29. Schott H. Effect of inorganic additives on solutions of nonionic surfactants - XVI. Limiting cloud points of highly polyoxyethylated surfactants. Colloids Surf Physicochem Eng Asp. 2001;186(1–2):129–36. https://doi.org/10.1016/s0927-7757(01)00491-5.

    Article  CAS  Google Scholar 

  30. Sharma R, Nandni D, Mahajan RK. Interfacial and micellar properties of mixed systems of tricyclic antidepressant drugs with polyoxyethylene alkyl ether surfactants. Colloids Surf A. 2014;451:107–16. https://doi.org/10.1016/j.colsurfa.2014.03.049.

    Article  CAS  Google Scholar 

  31. Martinez-Landeira P, Ruso JM, Prieto G, Sarmiento F. Surface tensions, critical micelle concentrations, and standard free energies of micellization of C-8-lecithin at different pHs and electrolyte concentrations. J Chem Eng Data. 2002;47(4):1017–21. https://doi.org/10.1021/je020033p.

    Article  CAS  Google Scholar 

  32. Azum N, Rub MA, Asiri AM, Bawazeer WA. Micellar and interfacial properties of amphiphilic drug-non-ionic surfactants mixed systems: surface tension, fluorescence and UV–Vis studies. Colloids Surf A. 2017;522:183–92. https://doi.org/10.1016/j.colsurfa.2017.02.093.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Southwest University Dr. Fund projects [SWU110056, SWU110057] and Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control Capacity building project [CSTC2012gg-yyjsb10002-33].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongchun Pan or Hong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (RAR 139 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wu, H., Li, Y. et al. Micellar thermodynamics of voriconazole cyclodextrin-HS15 complex in glucose and NaCl solution. J Therm Anal Calorim 145, 59–66 (2021). https://doi.org/10.1007/s10973-020-09692-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09692-x

Keywords

Navigation