Skip to main content
Log in

A phosphorus- and nitrogen-containing DOPO derivative as flame retardant for polylactic acid (PLA)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The preparation of high-efficient flame-retardant PLA remains a major challenge due to the unavoidable loss in mechanical properties. In this study, a DOPO derivative containing phosphorus and nitrogen in the molecular structure with amino as terminal group (DOPO-NH2) was incorporated into PLA to improve the flame resistance. The addition of this DOPO derivative on the thermal stability, flame retardancy and mechanical properties of PLA was investigated. With loading of only 5 mass% DOPO-NH2, the LOI value increased to 26% and UL-94 V-0 was attained. The heat release rate showed obvious decrease by microscale combustion calorimetry. Moreover, the mechanical properties of PLA/5DOPONH2 composite have not deteriorated significantly due to the low loading and the existence of hydrogen bond between DOPO-NH2 and PLA matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bourbigot S, Fontaine G. Flame retardancy of polylactide: an overview. Polym Chem. 2010;1:1413–22.

    Article  CAS  Google Scholar 

  2. Hu Y, Xu P, Gui H, Wang X, Ding Y. Effect of imidazolium phosphate and multiwalled carbon nanotubes on thermal stability and flame retardancy of polylactide. Compos Part A Appl Sci Manu. 2015;77:147–53.

    Article  CAS  Google Scholar 

  3. Tawiah B, Yu B, Fei B. Advances in flame retardant poly(lactic acid). Polymer. 2018;10:876–97.

    Article  Google Scholar 

  4. Maqsood M, Langensiepen F, Seide G. Investigation of melt spinnability of plasticized polylactic acid biocomposites-containing intumescent flame retardant. J Therm Anal Calorim. 2020;139:305–18.

    Article  CAS  Google Scholar 

  5. Tang G, Deng D, Chen J, et al. The influence of organo-modified sepiolite on the flame-retardant and thermal properties of intumescent flame-retardant polylactide composites. J Therm Anal Calorim. 2017;130:763–72.

    Article  CAS  Google Scholar 

  6. Akar AO, Hacaloglu J. Preparation and characterization of poly(lactic acid) composites involving aromatic diboronic acid and organically modified montmorillonite. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09236-y.

    Article  Google Scholar 

  7. Luo H, Zhou F, Yang Y, et al. Synergistic flame-retardant behavior and mechanism of tris(3-nitrophenyl) phosphine and DOPO in epoxy resins. J Therm Anal Calorim. 2018;132:483–91.

    Article  CAS  Google Scholar 

  8. Huo S, Liu Z, Wang J. Thermal properties and flame retardancy of an intumescent flame-retarded epoxy system containing phosphaphenanthrene, triazine-trione and piperidine. J Therm Anal Calorim. 2019;139:1099–110.

    Article  Google Scholar 

  9. Yin W, Chen L, Lu F, Song P, Dai J, Meng L. Mechanically robust, flame-retardant poly(lactic acid) biocomposites via combining cellulose nanofibers and ammonium polyphosphate. ACS Omega. 2018;3:5615–26.

    Article  CAS  Google Scholar 

  10. Wang X, Hu Y, Song L, Xuan S, Xing W, Bai Z, Lu H. Flame retardancy and thermal degradation of intumescent flame retardant poly(lactic acid)/starch biocomposites. Ind Eng Chem Res. 2011;50:713–20.

    Article  CAS  Google Scholar 

  11. Gu L, Qiu J, Yao Y, Sakai E, Yang L. Functionalized MWCNTs modified flame retardant PLA nanocomposites and cold rolling process for improving mechanical properties. Compos Sci Technol. 2018;161:39–49.

    Article  CAS  Google Scholar 

  12. Ye L, Ren J, Cai SY, Wang ZG, Li JB. Poly(lactic acid) nanocomposites with improved flame retardancy and impact strength by combining of phosphinates and organoclay. Chin J Polym Sci. 2016;34:785–96.

    Article  CAS  Google Scholar 

  13. Liao F, Ju Y, Dai X, Cao Y, Li J, Wang X. A novel efficient polymeric flame retardant for poly (lactic acid) (PLA): synthesis and its effects on flame retardancy and crystallization of PLA. Polym Degrad Stabil. 2015;120:251–61.

    Article  CAS  Google Scholar 

  14. Liao F, Zhou L, Ju Y, Yang Y, Wang X. Synthesis of a novel phosphorus-nitrogen-silicon polymeric flame retardant and its application in poly(lactic acid). Ind Eng Chem Res. 2014;53:10015–23.

    Article  CAS  Google Scholar 

  15. Gu L, Qiu J, Sakai E. Effect of DOPO-containing flame retardants on poly(lactic acid): non-flammability, mechanical properties and thermal behaviors. Chem Res Chin U. 2017;33:143–9.

    Article  CAS  Google Scholar 

  16. Lin J, Zhang WC, Tong B, Yang RJ. Crystallization, mechanical and flame-retardant properties of poly(lactic acid) composites with DOPO and DOPO-POSS. Chin J Polym Sci. 2018;36:871–9.

    Article  Google Scholar 

  17. Yu T, Tuerhongjiang T, Sheng C, Li Y. Phosphorus-containing diacid and its application in jute/poly(lactic acid) composites: mechanical, thermal and flammability properties. Compos Part A Appl Sci Manu. 2017;97:60–6.

    Article  CAS  Google Scholar 

  18. Long L, Chang Q, He W, Xiang Y, Qin S, Yin J, Yu J. Effects of bridged DOPO derivatives on the thermal stability and flame retardant properties of poly(lactic acid). Polym Degrad Stabil. 2017;139:55–66.

    Article  CAS  Google Scholar 

  19. Liu Y. Epoxy resins from novel monomers with a bis-(9,10-dihydro-9-oxa-10-oxide-10-phosphaphenanthrene-10-yl-) substituent. J Polym Sci Pol Chem. 2010;40:359–68.

    Article  Google Scholar 

  20. Meenakshi KS, Sudhan EPJ, Kumar SA, Umapathy MJ. Development and characterization of novel DOPO based phosphorus tetraglycidyl epoxy nanocomposites for aerospace applications. Prog Org Coat. 2011;72:402–9.

    Article  Google Scholar 

  21. Wen Y, Cheng Z, Li W, Li Z, Liao D, Hu X, Pan N, Wang D, Richard HT. A novel oligomer containing DOPO and ferrocene groups: synthesis, characterization, and its application in fire retardant epoxy resin. Polym Degrad Stabil. 2018;156:111–24.

    Article  CAS  Google Scholar 

  22. Ran G, Liu X, Guo J, Sun J, Li H, Gu X, Zhang S. Improving the flame retardancy and water resistance of polylactic acid by introducing polyborosiloxane microencapsulated ammonium polyphosphate. Compos Part B Eng. 2019;173:106772–83.

    Article  Google Scholar 

  23. Ran J, Qiu J, Xie H, Lai X, Li H, Zeng X. Combination effect of zirconium phosphate nanosheet and PU-coated carbon fiber on flame retardancy and thermal behavior of PA46/PPO alloy. Compos Part B Eng. 2019;166:621–32.

    Article  CAS  Google Scholar 

  24. Jiang P, Gu X, Zhang S, Wu S, Zhao Q, Hu Z. Synthesis, characterization, and utilization of a novel phosphorus/nitrogen-containing flame retardant. Ind Eng Chem Res. 2015;54:2974–82.

    Article  CAS  Google Scholar 

  25. Jing J, Zhang Y, Fang Z. Diphenolic acid based biphosphate on the properties of polylactic acid: synthesis, fire behavior and flame retardant mechanism. Polymer. 2017;108:29–37.

    Article  CAS  Google Scholar 

  26. Liu T, Jing J, Yan Z, Fang Z. Synthesis of a novel polyphosphate and its application with APP in flame retardant PLA. Rsc Adv. 2018;8:4483–93.

    Article  CAS  Google Scholar 

  27. Ran S, Fang F, Guo Z, Song P, Cai Y, Fang Z, Wang H. Synthesis of decorated graphene with P, N-containing compounds and its flame retardancy and smoke suppression effects on polylactic acid. Compos Part B Eng. 2019;170:41–50.

    Article  CAS  Google Scholar 

  28. Wei LL, Wang DY, Chen HB, Chen L, Wang XL, Wang YZ. Effect of a phosphorus-containing flame retardant on the thermal properties and ease of ignition of poly(lactic acid). Polym Degrad Stabil. 2011;96:1557–61.

    Article  CAS  Google Scholar 

  29. Kashiwagi T, Mu M, Winey KI, Cipriano B, Raghavan SR, Pack S, Miriam R, Yang Y, Grulke E, Shields J, Harris R, Douglas J. Relation between the viscoelastic and flammability properties of polymer nanocompositesq. Polymer. 2008;49:4358–68.

    Article  CAS  Google Scholar 

  30. Lan X, Liu X, Hua S, Liu Z, Xie B, Yang M. Effect of poly(acrylic acid) on the rheological and thermal properties of poly(lactic acid). Acta Polym Sini. 2013;13:922–7.

    Article  Google Scholar 

  31. Butnaru I, Fernández-Ronco MP, Czech-Polak J, Heneczkowski M, Bruma M, Gaan S. Effect of meltable triazine-DOPO additive on rheological, mechanical, and flammability properties of PA6. Polymer. 2015;7:1541–63.

    Article  CAS  Google Scholar 

  32. Cai J, Wirasaputra A, Zhu Y, Liu S, Zhou Y, Zhang C, Zhao J. The flame retardancy and rheological properties of PA6/MCA modified by DOPO-based chain extender. Rsc Adv. 2017;7:19593–603.

    Article  CAS  Google Scholar 

  33. Lin Y, Zhang KY, Dong ZM, Dong LS, Li YS. Study of hydrogen-bonded blend of polylactide with biodegradable hyperbranched poly(ester amide). Macromolecules. 2007;40:6257–67.

    Article  CAS  Google Scholar 

  34. Wu N, Fu G, Yang Y, Xia M, Yun H, Wang Q. Fire safety enhancement of a highly efficient flame retardant poly(phenylphosphoryl phenylenediamine) in biodegradable poly(lactic acid). J Hazard Mater. 2019;363:1–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by Science and Technology Innovation Talent Team Project in Guizhou Province ([2015]4006), High level Innovative Talent-training Program in Guizhou Province ([2015]4037 and [2016]5667), Science Foundation of Guizhou Province (2018]1088), Doctoral Scientific Fund Project in Huanggang Normal University (2042019029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guomin Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1. FTIR (a), 1H NMR spectra (b), 31P NMR spectra (c) and MS (d) of DOPO-NH2. (TIFF 1334 kb)

10973_2020_9688_MOESM2_ESM.tif

Fig. S2. Absorbance of pyrolysis products for pure PLA (a) and PLA/10DOPO-NH2 composite (b) at different temperatures. (TIFF 1273 kb)

10973_2020_9688_MOESM3_ESM.tif

Fig. S3. The images of the specimens after LOI and UL-94 tests: (a) PLA, (b) PLA/5DOPO-NH2, (c) PLA/7.5DOPO-NH2 and (d) PLA/10DOPO-NH2. (TIFF 4408 kb)

10973_2020_9688_MOESM4_ESM.tif

Fig. S4. The digital images of the char residue of PLA and flame retardant PLA after heating in muffle for 10 min: (a) PLA; (b) PLA/5DOPO-NH2; (c) PLA/7.5DOPO-NH2 and (d) PLA/10DOPO-NH2. (TIFF 4443 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., He, W., Long, L. et al. A phosphorus- and nitrogen-containing DOPO derivative as flame retardant for polylactic acid (PLA). J Therm Anal Calorim 145, 331–343 (2021). https://doi.org/10.1007/s10973-020-09688-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09688-7

Keywords

Navigation