Skip to main content
Log in

Dissipative heat energy on Cu and Al2O3 ethylene–glycol-based nanofluid flow over a heated semi-infinite vertical plate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present analysis describes the effect of dissipative heat energy transfer in Ethylene–Glycol (EG) based on conducting nanofluid over a heated semi-infinite vertical plate past through a porous medium. Uniform magnetic field, heat source/sink, and the effect of particle concentration also have been discussed by incorporating in the energy and solutal transfer equations, respectively. In addition to that, the thermal properties of the nanofluid are affected by the thermal slip boundary condition since; the temperature slip is favorable for the reduction in the heat transfer. Assuming self-similar transformations, the governing PDEs are transformed into non-linear coupled ODEs. These transformed equations are solved by using semi-analytical techniques such as Adomian Decomposition Method (ADM). The characteristics of different parameters on the flow phenomena are obtained and presented via graphs. The numerical values of the thermophysical properties of both the nanoparticles and the base fluid are shown in the table. Validation of the present work is obtained by comparing our result with the earlier established result and it is found that both the results are coinciding with each other. However, the main quantified results are the following: due to heavy density of the Cu nanoparticles, increasing volume fraction in ethylene–glycol base fluid resists the fluid motion and the inclusion of dissipative heat energy is favorable to enhance the nanofluid temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

a :

Stretching rate [s1]

C :

Fluid concentration

\(c_{{\text{p}}}\) :

Specific heat \([Jkg^{ - 1} K^{ - 1} ]\)[Jkg1K1]

\(C_{\infty }\) :

Free stream concentration

\({\text{Ec}}\) :

Eckert number

\({\text{Ha}}\) :

Magnetic parameter

\({\text{Kc}}\) :

Chemical reaction parameter

\({\text{pr}}\) :

Prandtl number

\(T\) :

Fluid temperature [K]

\(u,v\) :

Velocity components along x and y direction, respectively [ms1]

\({\text{Bi}}\) :

Biot number

\(D_{{\text{B}}}\) :

Brownian diffusion coefficient

\({\text{Gr}}\) :

Grashof number

\(K_{{\text{p}}}\) :

Porosity parameter

\({\text{Le}}\) :

Lewis number

\(S\) :

Heat generation/absorption parameter

\(T_{\infty }\) :

Free stream temperature [K]

\(\rho\) :

Density [kgm3]

\(\nu\) :

Dynamic viscosity [m2s1]

\(\alpha\) :

Thermal diffusivity [m2s1]

\(\tau\) :

Specific heat ratio

\(\theta\) :

Dimensionless temperature

\(\beta\) :

Volumetric thermal expansion coefficient

\(\mu\) :

Kinematic viscosity [kgm1s1]

\(\sigma\) :

Electrical conductivity [Ω1m1]

\(\kappa\) :

Thermal conductivity [Wm1k1]

\(\phi\) :

Nanoparticle volume fraction

\(f\) :

Dimensionless velocity

\(\Phi\) :

Dimensionless concentration

f :

Base fluid

nf :

Nanofluid

References

  1. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. ASME Fluids Eng Div. 1995;231:99–105.

    CAS  Google Scholar 

  2. Dogonchi AS, Ismael MA, Chamkha AJ, Ganji DD. Numerical analysis of natural convection of Cu–water nanofluid filling triangular cavity with semicircular bottom wall. J Therm Anal Calorim. 2019;135(6):3485–97.

    Article  CAS  Google Scholar 

  3. Dogonchi AS, Chamkha AJ, Ganji DD. A numerical investigation of magnetohydrodynamic natural convection of Cu–water nanofluid in a wavy cavity using CVFEM. J Therm Anal Calorim. 2019;135(4):2599–611.

    Article  CAS  Google Scholar 

  4. Alarifi IM, Abokhalil AG, Osman M, Lund LA, Ayed MB, Belmabrouk H, Tlili I. MHD flow and heat transfer over vertical stretching sheet with heat sink or source effect. Symmetry. 2019;11(3):297.

    Article  CAS  Google Scholar 

  5. Li Z, Saleem S, Shafee A, Chamkha AJ, Du S. Analytical investigation of nanoparticle migration in a duct considering thermal radiation. J Therm Anal Calorim. 2019;135(3):1629–41.

    Article  CAS  Google Scholar 

  6. Souayeh B, Reddy MG, Sreenivasulu P, Poornima T, Rahimi-Gorji M, Alarifi IM. Comparative analysis on non-linear radiative heat transfer on MHD Casson nanofluid past a thin needle. J Mol Liq. 2019;284:163–74.

    Article  CAS  Google Scholar 

  7. Makinde OD. Analysis of Sakiadis flow of nano fluids with viscous dissipation and Newtonian heating. Appl Math Mech. 2012;33(12):1545–54.

    Article  Google Scholar 

  8. Motsumi TG, Makinde OD. Effects of thermal radiation and viscous dissipation on boundary layer flow of nanofluids over a permeable moving flat plate. Phys Scr. 2012;86:045003.

    Article  Google Scholar 

  9. Nadeem S, Mehmood R, Akbar NS. Non-orthogonal stagnation point flow of a nano non-Newtonian fluid towards a stretching surface with heat transfer. Int J Heat Mass Transfer. 2013;57:679–89.

    Article  CAS  Google Scholar 

  10. Das K. Lie group analysis of stagnation-point flow of a nanofluid. Microfluidics Nanofluidics. 2013;15:267–74.

    Article  CAS  Google Scholar 

  11. Das K. Nanofluid flow over a shrinking sheet with surface slip. Microfluidics Nanofluidics. 2014;16:391–401.

    Article  CAS  Google Scholar 

  12. Nadeem S, Haq RU, Khan ZH. Heat transfer analysis of water-based nanofluid over an exponentially stretching sheet. Alexandria Eng J. 2014;53(1):219–24.

    Article  Google Scholar 

  13. Kunetsov AV, Neild DA. Natural convective boundary layer flow of a nano fluid past a vertical plate: a revised model. Int J Ther Sci. 2014;77:126–9.

    Article  Google Scholar 

  14. Nadeem S, Haq RU, Akbar NS. MHD three-dimensional boundary layer flow of casson nano fluid past a linearly stretching sheet with convective boundary condition. IEEE Trans Nanotech. 2014;13:109–15.

    Article  CAS  Google Scholar 

  15. Pattnaik PK, Biswal T. MHD free convective boundary layer flow of a viscous fluid at a vertical surface through porous media with non-uniform heat source. IJISET. 2015;2(3):211–23.

    Google Scholar 

  16. Makinde OD, Mishra SR. On stagnation point flow of variable viscosity nanofluids past a stretching surface with radiative heat. Int J Appl Comput Math. 2017;3(2):561–78.

    Article  Google Scholar 

  17. Thumma T, Mishra SR. Effect of viscous dissipation and Joule heating on magnetohydrodynamics Jeffery nanofluid flow with and without multi-slip boundary conditions. J Nanofluids. 2018;7(3):516–26.

    Article  Google Scholar 

  18. Parida SK, Mishra SR. Transport properties on MHD 3-D ethylene glycol and water based colloidal suspensions (Al, CuO & SiC) nanoparticles: a numerical Study. Int J Nano Biomater. 2018;7(4):282–96.

    Article  CAS  Google Scholar 

  19. Rout BC, Mishra SR. Thermal energy transport on MHD nanofluid flow over a stretching surface: a comparative study. Eng Sci Technol. 2018;21(1):60–9.

    Google Scholar 

  20. Wakif A, Boulahia Z, Mishra SR, Rashidi MM, Sehaqui R. Influence of a uniform transverse magnetic field on the thermo-hydrodynamic stability in water-based nanofluids with metallic nanoparticles using a generalized buongiorno's mathematical model. Eur Phys J Plus. 2018;133:181.

    Article  Google Scholar 

  21. Mishra SR, Rout BC. Analytical solution of electrical conducting water-based (KKL model) nanofluid flow over a linearly stretching sheet. Iran J Sci Technol Trans A. 2019;43(3):1239–47.

    Article  Google Scholar 

  22. Rout BC, Mishra SR, Nayak B. Semi-analytical solution of axisymmetric flows of Cu- and Ag-water nanofluids between two rotating disks. Heat Transfer Asian Res. 2019;48(3):957–81.

    Article  Google Scholar 

  23. Rout BC, Mishra SR. Analytical approach to metal and metallic oxide properties of Cu-water and TiO2-water nanofluids over a moving vertical plate. Pramana J Phys. 2019;93(3):41.

    Article  Google Scholar 

  24. Bahiraei M, Mazaheri N, Hassanzamani SM. Efficacy of a new graphene–platinum nanofluid in tubes fitted with single and twin twisted tapes regarding counter and co-swirling flows for efficient use of energy. Int J Mech Sci. 2019;150:290–303.

    Article  Google Scholar 

  25. Mehdi B, Nima M, Aliee F. Second law analysis of a hybrid nanofluid in tubes equipped with double twisted tape inserts. Powder Technol. 2019;345:692–703.

    Article  Google Scholar 

  26. Mehdi B, Nima M, Ali R. Application of a hybrid nanofluid containing graphene nanoplatelet–platinum composite powder in a triple-tube heat exchanger equipped with inserted ribs. Appl Therm Eng. 2019;149:588–601.

    Article  Google Scholar 

  27. Mehdi B, Mohammad J, Marjan G. Efficacy of a hybrid nanofluid in a new microchannel heat sink equipped with both secondary channels and ribs. J Mol Liq. 2019;273:88–98.

    Article  Google Scholar 

  28. Soleimani S, Sheikholeslami M, Ganji DD, Gorji-Bandpay M. Natural convection heat transfer in a nanofluid filled semi-annulus enclosure. Int J Heat Mass Transf. 2012;39:565–74.

    Article  CAS  Google Scholar 

  29. Sheikholeslami M, Ganji DD. Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer. Energy. 2014;75:400–10.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A.K., Pattnaik, P.K., Mishra, S.R. et al. Dissipative heat energy on Cu and Al2O3 ethylene–glycol-based nanofluid flow over a heated semi-infinite vertical plate. J Therm Anal Calorim 145, 129–137 (2021). https://doi.org/10.1007/s10973-020-09666-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09666-z

Keywords

Navigation